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Photoacoustic sensors efficiently
detect trace gas
Cinzia Di Franco, Angela Elia, Vincenzo Spagnolo,
Pietro Mario Lugarà, and Gaetano Scamarcio

Quantum-cascade lasers combined with photoacoustic spectroscopy al-
low for the design of compact, sensitive gas sensors for environmental
applications.

Increasing awareness and new regulations for safety and emis-
sion control have created a strong demand for trace gas sensors
that are compact and portable, as well as low cost and reliable.
Quantum-cascade lasers (QCLs) have given new impetus to the
development of optical gas sensors thanks to their tunability in
the spectral region from 3-20�m (fingerprint region). QCLs show
excellent properties in their narrow line width, average power
(up to a few watts), and room-temperature operation. In com-
bination with these laser sources, photoacoustic spectroscopy
(PAS) offers the advantage of high sensitivity, selectivity, com-
pact setup, fast time-response, and simple optical alignment.

PAS is based on the photoacoustic effect,1 the conversion of
light to sound in absorbing materials. Viengerov2 used PAS for
the first spectroscopic gas analysis in 1938. The photoacoustic
signal is traditionally detected using a resonant acoustic cell
equipped with a sensitive microphone.3 Recently, alternative
transducers such as a quartz tuning fork (TF),4 optimized
capacitive microelectromechanical systems microphones5, or a
silicon cantilever6 have been demonstrated. We designed and
fabricated photoacoustic gas sensors based on different setup
configurations for detection of nitric oxide (NO) and formalde-
hyde (CH2O). The devices exhibit state-of-the-art sensing
performance.

The realized photoacoustic sensors use commercial QCLs as
light sources. We have investigated different sensor schemes.
One is based on resonant photoacoustic H- and T-cell sensors
and electret microphones. Under resonant conditions, the cells
work as an acoustic amplifier. The absorbed laser energy accu-
mulates in the resonator’s acoustic mode. The amplitude of the
acoustic wave is scaled by a quality factor (Q ) of 20–200.7–12

An alternate scheme is based on quartz-enhanced photoacoustic
spectroscopy (QEPAS). In this technique, the modulated laser

Figure 1. Schematic of the photoacoustic a) H-cell and b) T-cell sensors.

light is focused between two prongs of a quartz TF, where the
absorbing gas generates acoustic pressure waves that excite a
resonant vibration and then are converted into an electrical
signal by the piezoelectric effect.13

The resonant photoacoustic cell characterized by H-cell geom-
etry consists of a cylindrical stainless steel resonator with two
�/4 long buffer volumes connected to its ends. This configura-
tion helps to reduce the background signal, via destructive in-
terference, caused by the heating of the two zinc selenide (ZnSe)
windows.

We designed the resonator to be excited in its first longitudinal
mode (1380Hz). It was equipped with four electret microphones
placed on the antinode of the acoustic mode (see Figure 1a). We
used the sensors to detect NO and CH2O down to 150 parts per
billion (ppb).

The resonant T-cell consists of two intersecting volumes: an
optical-absorption volume and an acoustical-resonance cylinder.
The internal gold-coated walls of the optical cavity have been
shaped to produce multiple light reflection and subsequent fo-
cusing in the cavity center. An electret microphone is mounted
at the end of the resonance cylinder in a design that does not
require a collimated laser beam (see Figure 1b). Using this
configuration, we saw a five times better detection limit (30ppb)
for CH2O.

Another group developed a QEPAS NO sensor using
a continuous-wave, thermoelectrically cooled, external-cavity
QCL light source13 (see Figure 2). To enhance the QEPAS signal,
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Figure 2. Schematic of the quartz-enhanced photoacoustic spectroscopy
sensor and the quantum-cascade laser (QCL). TF: Tuning fork. MR:
Microresonator.

We coupled the TF with an acoustic-organ-pipe type of microres-
onator (MR). The QEPAS spectrophone, consisting of the TF and
the MR, was put inside a vacuum-tight cell with ZnSe windows.
A NO concentration of 15 ppb resulted in a noise-equivalent
signal.

In summary, the development of compact gas sensors is im-
portant for environmental applications. We developed two dif-
ferent approaches using QCLs for sensing trace NO and CH2O.
The former was based on standard PAS and resonant cells. The
result was a better detection limit using an innovative T-cell.
The second approach was based on QEPAS, with the sensor’s
detection sensitivity at 15ppb. Future improvements will in-
volve implementing a low-loss, mid-infrared, single-mode fiber
system to couple the QCL source with the spectrophone and
convert our sensor into a portable device.
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