
st
a
tu

s

so
li

d
i

p
h

y
si

ca a

Quartz Crystals www.pss-a.com

ORIGINAL PAPER
Damping Mechanisms of Piezoelectric Quartz Tuning
Forks Employed in Photoacoustic Spectroscopy for Trace
Gas Sensing
Marilena Giglio, Giansergio Menduni, Pietro Patimisco, Angelo Sampaolo,
Arianna Elefante, Vittorio M. N. Passaro, and Vincenzo Spagnolo*
A study of the dependence of main loss mechanisms on the geometry of
piezoelectric quartz tuning forks (QTFs) is reported. The influence of these
loss mechanisms on the quality factor Q occurring while the QTF vibrates at
the in-plane flexural fundamental and first overtone resonance modes is
investigated. From this study, two QTFs efficiently operating both at the
fundamental and first overtone mode are designed and realized. Data
analysis demonstrates that air viscous damping is the dominant energy
dissipation mechanism for both flexural modes. However, at the first
overtone mode the air damping is reduced and higher quality factors can be
obtained when operating at the first overtone mode with respect to the
fundamental one.
1. Introduction

Piezoelectric quartz tuning forks (QTFs) are cheap, commercially
available, and high-quality resonators. They are widely used as the
main component for timekeeping in watches and frequency
measurements. Typically, theQTFprongs have a rectangular shape,
few millimeters long, and a fraction of a millimeter wide. Used for
timemeasurement applications, they usually operate at a frequency
of215Hz� 32.7 kHz.QTFsaredriven intooscillationbyapplyingan
alternating voltage to the gold pads deposited on both prongs.
Exploiting the piezoelectric effect occurring in quartz, a charge
displacementoccursonprongsurfaceas theprongsbend, leading to
the generation of a piezoelectric current proportional to the
amplitude of the exciting voltage.[1] Recently, the use of QTFs has
been extended to other applications, such as atomic force
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microscopy,[2–4] photoacoustic gas sens-
ing,[5–7] rheology,[8] and high-resolution accel-
erometer and gyroscopes measurements.[9]

In quartz-enhanced photoacoustic spectros-
copy (QEPAS) theQTF is immersed in a low-
pressure gas and a laser beam is focused
between the two prongs. The gas absorbing
the laser light relaxes via non-radiative
molecular collisions, causing a temperature
increase and thus a gas expansion. If the laser
is modulated at one of frequencies of the in-
plane flexural resonance modes, non-radia-
tive relaxation processes generate sequential
gas expansion, generating weak pressure
waves (i.e., sound) that hit and bend QTF
prongs. A QEPAS sensor performance
depends on the selected QTF resonance
quality factor Q, which is the ratio of the total input energy into
the resonator to the energy dissipated within a vibration cycle.[10] A
high-quality factor indicates a small resonance bandwidth and low
dissipation losses. To improve the design of these devices, it is
important toknowwhichfactorscontribute to theenergydissipation
processes. Several QTFs geometries have been proposed for
QEPAS, with resonance frequency spanning from 2.8 to 32 kHz
for the fundamental flexural mode.[10–13] By lowering the
fundamental resonance mode below 5kHz, the first overtone
mode(havingafrequencyaboutx6 larger thanthefundamentalone)
also become suitable for QEPAS sensing.[14–17] In a QTF,
fundamentalandfirstovertonemodesexhibit substantiallydifferent
resonanceproperties,mainlybecause lossmechanismsare strongly
dependent on the related vibrational dynamics.

In this work, we identify the two main loss mechanisms
occurring in a QTF vibrating at the fundamental and the overtone
mode. Starting from theoretical models describing each loss
mechanism, two QTFgeometries optimized to operate efficiently
both at the fundamental and at the first overtone mode have been
designed, realized, and tested. The resonance properties, namely
the resonance frequency and the quality factor, were measured at
atmospheric pressure as well as at 25Torr.
2. Loss Mechanisms

In the Euler–Bernoulli beam theory, each vibrating prong of a
QTF can be treated as a single cantilever, that is, the coupling
between them is neglected. The model allows the calculation of
the discrete infinite natural resonance frequencies fn for in-plane
019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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flexural modes, given by[18]:

f n ¼
πT

8
ffiffiffiffiffi
12

p
L2

ffiffiffi
E
ρ

s
m2

n ð1Þ

where E¼ 0.72 � 1011Nm�2 and ρ¼ 2650Kgm�3 are the quartz
Young’s modulus and the quartz density, respectively. T is the
prong thickness, L its length and mn is the mode number. The
lowest resonance mode is usually referred to as the fundamental
one (m0¼ 1.194), while subsequent ones are called overtone
modes (m1¼ 2.998 for the first overtone mode).

When vibrating prongs undergo harmonic oscillations of
small amplitude in a gas, they tend to induce particle motion in
the fluid, giving rise to energy loss and additional inertia. By
adding to Euler–Bernoulli equation both a resistive part, which
takes into account the energy dissipation by acoustic loss, and a
reactive part which is responsible of additional inertia to the
prong, a linear increase of the resonance frequency is predicted
when the pressure is reduced.[18] However, the influence of the
air damping on the resonance quality factor cannot be treated by
using the Euler–Bernoulli theory. In addition, the so-called
support loss mechanism related to mechanical energy transfer
from the vibrating prong to the support must be taken into
account.[19] Air damping is referred to as an extrinsic loss
mechanism, while support damping is considered an intrinsic
loss mechanism. Both these loss mechanisms strongly depend
on prongs size and the dynamic of the vibrational mode under
consideration. Several theoretical models have been proposed
for each loss mechanism and their dependence on the main
physical parameters have been reported. Each loss contribution
is independent from the other, but all concur simultaneously to
determine the QTF resonances quality factors.
2.1. Air Damping

When a QTF vibrating prong is immersed in air, a drag force is
exerted on it. This force is proportional to the local velocity of the
prong in terms of the damping parameter Cair. The damping
parameter allows calculating the mechanical quality factor of the
damped system. SinceCair is pressure-dependent, three pressure
regions can be identify, each characterized by a different
dominant damping mechanism: intrinsic, molecular, and
viscous region. In the intrinsic region, the fluid pressure is so
low that the damping is negligible compared to the intrinsic
damping of the vibrating beam itself. Hence, the Q-factor is
independent on the fluid pressure. In the molecular region,
damping is caused by independent collisions of non-interacting
molecules with the vibrating beam. In this case, the drag force
can be determined by employing the kinetic theory of gases,
leading to a damping parameter Cair proportional to the fluid
pressure and the beam geometry. In the viscous region, the
medium acts as a viscous fluid and the drag force is calculated
using fluid mechanics. W. E. Newell derived an expression for
the critical pressure pc at which the air damping changes from
molecular to viscous region, pc¼ 0.3 Torr w�1, where w is the
crystal width expressed in millimeters.[20] With 0.25mm<w
< 0.5mm, pc is <1.2 Torr. Since QEPAS sensors operate at
Phys. Status Solidi A 2019, 1800552 1800552 (
higher pressure, in all cases reported in this manuscript the
QTFs operate in the viscous region. Starting from these
assumptions, Blom et al.[21] derived an analytical expression
for both the total mechanical energy of the vibrating beam and
the dissipated energy per period, leading to a formulation of
quality factor related to fluid damping (Qair):

Qair ¼
2πρTwf n

Cair
ð2Þ

Qair does not depend on the vibrating mode shape and has the
same expression for each vibrational mode. Hosaka et al.[22] have
proposed an approximation for the air damping problem of a
vibrating prong. Kokubun et al.[23] considered each prong of the
QTF having a rectangular cross-section acting as a string of
spheres. If these spheres vibrate independently of each other, the
resulting drag force is the sum of the drag force of each single
sphere. Starting from this approximation, Hosaka et al.[22] made
two assumptions: 1) the length L of the QTF prong is much
greater than its thickness T and crystal width w and 2) every
single portion of the beam is replaced with a sphere of diameter
w. They derived an expression for Cair and a formulation of Qair

given by:

Qair ¼
4πρTw2f n

3πμwþ 3
4 πw

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πρairμfn

p ð3Þ

where ρair is the air density and m its viscosity. Losses due to the
air damping, proportional to the reciprocal ofQair, consist of two
terms: one pressure-independent (assuming a negligible
dependence of fn on the air pressure) and the other one
pressure-dependent. ρair¼MP/Rθ is estimated by using the ideal
gas law, where M¼ 28.964 kgmol�1 is the molar mass,
R¼ 62.3637m3 �Torr/K �mol is the gas constant and θ (in K)
is the prong temperature. Qair depends on the air pressure as
well as on the resonance frequency and the prong sizes and
decreases rapidly when the pressure increases. At higher
pressures, Qair levels off and becomes quasi-asymptotic at
atmospheric pressure.

The air damping mechanisms are strongly reduced for higher
order vibrational modes. For example, at atmospheric pressure,
Qair is three times higher for the first overtonemode with respect
to the fundamental mode. By combining Equations (1) and (3),
an explicit dependence ofQair can be derived as a function of the
prong size.[24] The guideline that emerges from thismodel is that
to reduce viscous losses the T/L ratio must be kept high. In
addition, the lower the crystal thickness, the higher the air
damping losses.
2.2. Support Losses

Although the history of support losses can be tracked back to the
1960s, this field still requires improved models to quantify these
loss mechanisms. Models describing support losses have been
developed using the theory of elasticity taking into account the
beam dynamics and stress-wave propagation. Several models
have been developed to analyse support losses and all of them
share the following set of assumptions: 1) elastic waves are
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 7)
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transmitted to the support form the vibrating shear forces
induced by the oscillating beam with a fixed end; 2) energy
propagating through the support does not reflect back into the
resonator; and 3) the prong-support junction section is assumed
to have zero-displacement.[25–27] The simplest model was
developed by Hao et al.[26] in which the prong is supposed to
be a rectangular cross-section resonator, attached monolithically
to a larger support with the same thickness as that of the prong.
The crystal thickness w is assumed to be much smaller than the
elastic wavelength λ of the propagating waves. The closed-form
expression for the quality factor related to the support losses in a
clamped-free cantilever can be expressed as:

Qsup p ¼ An
L3

T3 ð4Þ

with An coefficients depending on the resonance mode number
and the prong material. Hao et al. estimated A0¼ 2.081 for the
fundamental mode and A1¼ 0.173 for the first overtone mode.
Other models were developed, all of them agreeing on the
support losses (L/T)3 dependence but differing in the coefficient
values.[25–27] In Table 1, theoretical models for Qsupp prediction
are summarized, with a highlight on the prong geometry
dependence and on main hypotheses assumed in the theoretical
models. D. Photiadis and J. Judge[25] predict a different prong
geometry dependence with respect to the other two models, but
an explicit dependence on the resonance mode is not provided.
For this reason, it cannot be used in the present work. From
these models, the straightforward approach for reducing support
losses is designing QTFs having prongs with large length-to-
thickness aspect ratios. Higher order modes suffer from higher
support losses according to Equation (4). Indeed, an increase of
about a factor of 10 on support losses is expected, when changing
from the QTF fundamental to its first overtone mode. The
influence of support losses on resonance mode order can be
explained by using the Euler–Bernoulli beam theory, which
allows a derivation of the mode shape of in-plane flexural modes.
The fundamental in-plane flexural mode is characterized by a
single antinode point on the prong tip, while the first overtone
mode has an additional antinode point located at the half of the
Table 1. Theoretical models proposed in literature for the prediction
of Qsupp as a function of the QTF prong geometry. The main
assumptions adopted for the models are also reported.

Model
[reference]

Qsupp

prediction
Main assumptions

Jimbo and

Itao[19]
Qsupp / L3

T3
� 2D wave theory

� Semi-infinite elastic support

� Fixed ends have zero displacement

Hao, et al.[26] Qsupp ¼ An
L3

T3
� 2D wave theory

� Beam and support have same width

� λ » w

� No displacement or velocity at fixed ends

� Dissipation through shear force

D. Photiadis

and J. Judge[25]
Qsupp � 1

0:31
L
w
L4

T4
� Semi elastic medium

� Only shear force was applied while torque

was considered negligible
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prong length.[10] For the first overtone mode, the second
antinode causes a higher stress on the QTFsupport and hence an
increase of the support losses with respect to the fundamental
mode. The mode shape and the antinode positions were
experimentally investigated by using QEPAS. In this technique,
a modulated laser light is focused between the QTF prongs. By
moving the laser spot along the QTF axis, a QEPAS signal
proportional to the induced deformation on the QTF prong can
be recorded as a function of the laser beam position. A good
agreement was found between the Euler–Bernoulli’s prediction
and the QEPAS measurement.[10]
3. Tuning Fork Design for Quartz-Enhanced
Photoacoustic Spectroscopy

In QEPAS operation, the tuning fork is used as acoustic
transducer to convert sound waves produced by an absorbing gas
in an electrical signal. The sound wave generation efficiency is
strictly related to the capability of the gas to completely relax the
excess of energy before the succeeding light absorption process
occurs.[28–30] This means that the sound wave generation
efficiency is mainly determined by the resonance frequency of
the vibrating QTF mode. In QEPAS, the operating frequency
should not exceed 40 kHz to ensure that the transfer of the excess
energy absorbed by the target gas follows efficiently the fast
modulation of the incident laser radiation.[5] It was also
demonstrated that lowering the resonance frequency is benefi-
cial for QEPAS sensing.[31] This establishes the main constraint
in the realization of QTFs to be used as acoustic transducer in
QEPAS both at fundamental and first overtone flexural mode.

For the investigation proposed in this work, the first overtone
resonance frequency is fixed to �20 kHz: in this way, by using
the Euler–Bernoulli equation, the fundamental mode resonance
falls at �3 kHz. Lowering the operating frequency at values
<3 kHz is not recommended in QEPAS since the sensor system
would be more influenced by the environmental acoustic noise.
According to Equation (1), this constraint on the resonance
frequency leads to the length and the thickness of the prongs to
be fixed by the relation T/L2� 3.8 � 10�3 in mm�1 units. This
condition must be combined with practical requirements. When
the QTF is excited both at the fundamental and the first overtone
mode in QEPAS, one laser beam is focused close to the antinode
point of the fundamental mode, which is located at the top of the
QTF, while the second laser beam is focused close to the second
antinode point of the overtone mode, located close to the middle
of prong.[15,16] Hence, for practical use, the prong length should
be not less than 0.5 cm. In addition, a constraint can be fixed also
on the prong thickness T: QTFs are realized via standard
chemical etching and when T< 300mm imperfections can affect
both the geometry and the symmetry of two prongs. All
combinations of prong thickness and length satisfying these
requirements were simulated. Aprecision of 1.0 and 0.1mmwas
assumed for the prong length and thickness, respectively. Qair

and Qsupp values were calculated by using Equations (3) and (4),
respectively, assuming a crystal thickness of 0.25mm. The
results are reported in Table 2.

For both the fundamental and the first overtone mode, the air
damping strongly decreases at longer prongs while the support
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim3 of 7)
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Table 2. Calculated f0, f1, and related Qair and Qsupp values for QTFs
having prong length L spanning from 10 and 19mm with related
prong thickness T properly chosen to ensure a fundamental mode
resonance frequency 3.2 kHz < f0< 3.5 kHz and first overtone
resonance frequency 19 kHz < f1< 22 kHz, estimated by using
Equation (1). Qair and Qsupp are calculated by using Equations (3)
and (4), respectively.

Fundamental mode First overtone mode

L [mm] T [mm] f0 [Hz] Qair Qsupp f1 [Hz] Qair Qsupp

10 0.4 3367.91 10 894 56 187 19 529.44 31 820 4671

11 0.5 3479.25 15 232 32516 21 091.79 44 277 2703

12 0.6 3508.24 19 425 22158 21 789.04 56 352 1842

13 0.7 3487.48 23 429 16648 21 970.62 67 933 1384

14 0.8 3436.65 27 234 13329 21 840.62 78 996 1108

15 0.9 3367.91 30 845 11153 21 522.24 89 550 927

16 1.0 3288.98 34 272 9634 21 091.79 99 624 801

17 1.0 3204.76 37 527 8524 20 597.46 109 248 709

18 1.2 3378.31 40 624 7681 20 070.05 118 456 639

19 1.4 3265.29 49 598 5524 21 156.89 144 147 459

20 1.6 3367.91 52 304 5202 20 449.11 152 336 432
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loss increases. As discussed in the previous section, theoretical
models describe each loss mechanism as standalone. To
investigate which loss mechanism dominates, we selected two
different QTF geometries from Table 2: the first having
L¼ 11mm, T¼ 0.5mm (named hereafter as QTF#1) and the
second with a longer prong length, L¼ 17mm, T¼ 1mm
(named hereafter as QTF#2), both with a crystal thickness
w¼ 0.25mm. A schematic of these QTFs is shown in Figure 1.
Both QTFs were realized starting from a z-cut quartz wafer with
a 2� rotation along the x-axis. The geometry was generated by
chemical etching and electrodes, consisting of chromium (50 Å
thick) and gold (250 Å thick) patterns, were applied photolitho-
graphically by means of shadow masks defined on both sides of
the wafer. The electrode pattern was designed to enhance the
fundamental flexural mode but allowing also the excitation of the
first overtone mode.[24]
4. Measurement of Resonance Properties

The properties of a QTF, namely the resonance frequency and
the quality factor, can be measured by exciting it electrically. A
Figure 1. Schematic view of the realized QTFs labelled as QTF#1 and QTF

Phys. Status Solidi A 2019, 1800552 1800552 (
sketch of the experimental setup is depicted in Figure 2. A
sinusoidal voltage excitation results in a piezoelectric charge
distribution across the QTF prongs. This piezoelectric current
is then converted to a voltage signal by means of a custom-
made trans-impedance pre-amplifier. The voltage signal is
then fed to a lock-in amplifier to be demodulated at the same
frequency of the signal excitation. The QTF was mounted in a
vacuum chamber, connected with a pressure controller and an
oil-free pump in order to keep fixed the working pressure. The
QTF response curves were acquired by performing a wide
frequency scan of the excitation voltage. Since the air damping
losses are dependent on the air pressure surrounding the
QTF, the QTF response curves were acquired both at
atmospheric pressure and at 25 Torr. The resonance curves
measured for QTF#1 and QTF#2 at atmospheric pressure,
both for the fundamental and overtone mode, are shown in
Figure 3.

Each spectral response was fitted by using a Lorentzian
function to determine the resonance frequency, that is, the peak
frequency value f of the Lorentzian fit function, and the full-
width-half-maximum (FWHM). The FWHM value allow
determining the quality factor as Q¼ f/FWHM for the
fundamental and overtone mode. In Table 3, the resonance
frequencies and quality factors are reported for both resonance
modes, at atmospheric pressure. Discrepancies between the
calculated and measured resonance frequency can be mainly
ascribed to: 1) gas damping; 2) additional weight of the
electrode gold layers; 3) dependence of the elasticity modulus of
quartz on the crystallographic axes orientation; 4) deviations in
geometry between the modeled and the real QTFs; and 5)
motion of prong support junction that cannot be assumed
completely fixed.[32] Our results clearly show that moving from
the fundamental to the overtone mode, the quality factor
increases for both QTF#1 and QTF#2. It can be concluded that
air damping is the main losses mechanism affecting the
vibrating tuning fork. According to Hosaka’s model,[22] we
expected Qair, overt/Qair, fund �2.91 for both QTFs (see Table 2),
while we measured an increase of the quality factor for the
overtone mode of 2.58 and 2.48 with respect to the fundamental
mode for QTF#1 and QTF#2, respectively. Hence, we can
suppose that while the air damping effect decreases, the
support loss mechanism starts to grow. In addition, QTF#1
exhibits an increase of the quality factor higher than that
measured for QTF#2, in agreement with the support losses
predicted by Hao’s model (see Table 2).[26] Since the dissipation
mechanisms are assumed independent of each other and the
resonator quality factor is proportional to the inverse of total
#2.

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim4 of 7)
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Figure 2. Schematic view of the experimental setup employed to
electrically excite QTFs and acquire their frequency spectral response.
TA – trans-impedance amplifier.

Table 3. Resonance frequencies and related quality factor values
extracted from Figure 3 for QTF#1 and QTF#2 fundamental and
overtone modes, at atmospheric pressure.

Fundamental mode Overtone mode

f0 [Hz] Q-factor f1 [Hz] Q-factor

QTF#1 3440.03 4400 21 415.19 11 370

QTF#2 2870.98 5860 17 747.47 14 570

st
a
tu

s

so
li

d
i

p
h

y
si

ca a

www.advancedsciencenews.com www.pss-a.com
energy dissipated, the overall Q-factor can be calculated as a
reciprocal sum of the two independent dissipative contribu-
tions:

1
Q

¼ 1
Qsup p

þ 1
Qair

ð5Þ

By using Qsupp and Qair values listed in Table 1 for QTF#1
and QTF#2, the estimated quality factor values are: 10373
(QTF#1, fundamental mode), 2547 (QTF#1, first overtone
mode), 6946 (QTF#2, fundamental mode), and 704 (QTF#2,
first overtone mode). The combination of the Hosaka’s and
Hao’s model predicts a reduction of the overall quality factor by
a factor of 4.1 and 9.8 for QTF#1 and QTF#2, respectively, when
moving from the fundamental to the first overtone mode. This
Figure 3. QTFs resonance curves measured at atmospheric pressure in stan
QTF#2 fundamental (c) and first overtone mode (d).
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is in contrast with our measurements. However, Qair is
supposed to increase when the first overtone mode is excited, as
confirmed by the trend observed for the measured overall
quality factors, for both QTFs. In order to reduce the
contribution from air damping, the same analysis was
performed at 25 Torr. The obtained response curves are shown
in Figure 4 and the obtained results are listed in Table 4. The
overall quality factors are significantly higher with respect to
those measured at atmospheric pressure, for both flexural
modes. This further confirms that the vibrating prongs mainly
suffer from air damping. Conversely, the model due to Hao
predicts a huge contribution of support losses to the overall
quality factor. At the first overtone mode, support losses are
expected to increase more than one order of magnitude with
respect to the fundamental mode, leading to a negligible
contribution ofQair in the overall quality factor estimation. This
disagrees with our measurements, allowing to affirm that while
the Hao’s model well predicts the trend of the support losses as
a function of the prong geometry, it overestimates the actual
values. Indeed, for QTF #2 overtone mode, the estimated Q-
dard air for QTF#1 fundamental (a) and first overtone mode (b), and for

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim5 of 7)
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Figure 4. QTFs resonance curves measured at air pressure of 25 Torr for QTF#1 fundamental (a) and first overtone mode (b), and for QTF#2
fundamental (c) and first overtone mode (d).
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factor is 704, while the observed value is Q¼ 14570 at
atmospheric pressure and 65 730 at 25 Torr. With respect to
the fundamental mode, QTF#1 exhibits a quality factor 3.78
times higher at the first overtone mode, while for QTF#2 this
factor is 3.08. The discrepancy between these two factors is
increased when the pressure is reduced, meaning that the
support losses are not negligible. This effect is more evident in
the QTF design showing the highest support loss value
(QTF#1). Despite that, QTF#2 showed quality factors higher
than those obtained for QTF#1, at both modes and pressure
values, meaning that for the realization of QTFs with high Q-
factors the air damping losses must be minimized. The effect of
support losses can become remarkable at pressures much lower
than 25 Torr, which is a pressure range typically not feasible for
QEPAS operation.
5. Conclusion

In this work, we reported the performances of two QTFs
designed to efficiently vibrate at the in-plane flexural
Table 4. Measured resonance frequencies and related quality factor
values for QTF#1 and QTF#2 fundamental and overtone modes at a
pressure of 25 Torr.

Fundamental mode Overtone mode

f0 [Hz] Q-factor f1 [Hz] Q-factor

QTF#1 3440.81 11 820 21 419.14 44 680

QTF#2 2871.56 21 340 17 749.53 65 730

Phys. Status Solidi A 2019, 1800552 1800552 (
fundamental and first overtone modes, with a high quality
factor. We identified two main loss mechanisms for in-plane
flexural modes: air damping and support losses. Both
mechanisms have been described as a function of the prong
geometry and the vibrational mode. The investigated QTFs
were designed to provide a resonance frequency of the
fundamental mode falling around 3 kHz and a first overtone
mode resonance around 20 kHz: with this choice, both modes
are suitable for QEPAS operation. Among the possible prong
geometries satisfying such requirement according to the
Euler–Bernoulli equation, we selected two prong geometries
differing in the theoretical contribution of the quality factor
due to the air damping. The analysis of resonance properties
has shown that the air damping is the dominant loss
mechanism and it should be minimized when a specific
resonance frequency is selected. Support losses become
relevant at air pressures lower than 25 Torr, which typically is
not a pressure range employed for QEPAS gas sensing
applications.
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