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Modeling and Design of a Semi-Integrated
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Abstract—Quartz enhanced photo acoustic spectroscopy
(QEPAS) has gained a growing interest in recent years for gas
sensing technology because of the high sensitivity provided by sharp
resonant tuning forks (QTFs) exploited as piezoelectric sound
wave detectors; and the modularity, compactness, and robustness
of the sensors. The currently used experimental configurations
of the QEPAS sensors still rely on free space optics, which are
potentially subject to misalignment and require a relatively high
space occupation. Here we propose the modelling and the design
of a QEPAS sensor with the laser source and optical components
for beam delivery bonded together and semi-integrated with the
tuning fork. In particular, we propose a configuration in which an
optical resonator placed between the prongs of the QTF is coupled
with the laser source through a waveguide (OMRSI-QEPAS). For
this setup design, COMSOL simulations provided pressure values
of the acoustic wavefront comparable with the standard on-beam
configuration employing acoustic resonator tubes. Therefore, the
design here proposed aims to package the opto-acoustic core of
a QEPAS sensor in a single module of few cubic centimeters to
definitively address the misalignment issues and pave the way to a
further level of miniaturization, integration and deployment for
application like mobile and on-drone sensing.

Index Terms—Guided-wave devices, integrated optics,
photoacoustic spectroscopy, QEPAS, ring resonators.

I. INTRODUCTION

PHOTOACOUSTIC spectroscopy (PAS) is an indirect ab-
sorption spectroscopy based on the photoacoustic effect
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and typically using lasers as excitation sources [1]. When light
at a specific wavelength is absorbed by the gas sample, the
excited molecules will subsequently relax to the ground state
either through emission of photons or by means of non-radiative
processes. These processes produce localized heating in the gas,
which in turn results in an increase of the local pressure. If the
incident light intensity is modulated, the generation of thermal
energy in the sample will also be periodic and a pressure wave,
i.e., a sound wave, will be produced at the same frequency of
the light modulation. The PAS signal can be amplified by tuning
the modulation frequency to one of the acoustic resonances of
the gas sample cell [2]. The key advantage of this technique
is that optical detector is not required, and the resulting sound
waves can be detected by a commercial hearing aid microphone.
The latest evolution of the PAS technique is Quartz-Enhanced
Photoacoustic Spectroscopy (QEPAS), which employ quartz
tuning forks (QTF) as core sensitive element [3]. The QTF acts as
a sharp resonator and piezoelectric transducer at the same time.
The use of QTFs has elevated the QEPAS technique to the best
candidate for in-situ and real-time trace gas detection, because of
an unmatchable level of compactness, extremely high sensitivity
(down to ppt), immunity to environmental noise and numerous
possibilities of development and upgrade of this technique [4].
QTFs are employed in different applications fields and in most
of the case are used for timing and sensing aims. Their main
features are: i) resonance frequencies typically falling in the
kHz-MHz range, depending on prongs dimensions and quartz
crystal properties; ii) high frequency stability of these reso-
nances, with frequency shifts approximately of 0.04 ppm/(°C)2

over a wide temperature range, from −40 °C to 90 °C; iii) high
quality factors, of few tens of thousands in air at the atmospheric
pressure; iv) QTFs have a low cost and small size, thus enabling
mass-production [5]. Until 2013, all QEPAS sensors reported in
literature made use of QTFs designed for timing applications to
vibrate at a resonance frequency of 32,768 (215) Hz. The two
prongs of these QTFs are typically 3 mm long, 0.35 mm wide
and 0.34 mm thick and are separated by a gap of 0.3 mm. They
have a quality factor as high as 30,000 in air, increasing up
to 100,000 in vacuum [3]. In QEPAS, to increase the effective
interaction length between the radiation-generated sound and
the QTF, an acoustic resonator is also usually installed. The
acoustic system composed of the QTF and the acoustic resonator
is referred as QEPAS spectrophone. The resonators used so far
consist of two metallic tubes aligned perpendicular to the QTF
plane (on beam-QEPAS) [6], parallel to the QTF plane (off-beam
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Fig. 1. Different configurations of QEPAS setups analyzed in this work. FS-QEPAS (a) is a simple QEPAS configuration without any mechanical resonator.
MR-QEPAS (b) is a free space configuration with a mechanical resonator. SI-QEPAS (c) is a semi-integrated version of QEPAS without mechanical resonators.
MRSI-QEPAS (d) is a semi-integrated version of QEPAS with a mechanical resonator. OMRSI-QEPAS (e) is a semi integrated version of QEPAS with a mechanical
resonator and an optical resonator (fed by an optical bus).

QEPAS) [7] or one single tube placed between the QTF prongs
with a pair of small slits in correspondence of the pressure
maximum [8].

One of the main issues with QEPAS based sensor systems
is the required focusing of the laser excitation beam between
the QTF prongs. The laser beam must not hit the prongs since
otherwise a large undesirable non-zero background arises due
to the laser contribution, hence limiting the sensor detection
sensitivity [9]. This problem triggered several solutions, for
instance the use of the Hollow Core Waveguides (HCW) to be
coupled with the laser sources for guiding the light and clean up
the laser beam mode profile [10]–[12].

The short optical pathlength, the capability to reach high
detection sensitivity, high compactness and robustness represent
the main distinct advantages which made QEPAS the leading-
edge technique mature for out-of-laboratory operation, target-
ing in-situ applications such as environmental monitoring and
leak detection [13], [14]. Nevertheless, for those applications
in which sensors must work in challenging environments like
downhole analysis of natural gas or early fire detection em-
powered by the drone technology, the further miniaturization
step requires a different level of integration of the opto-acoustic
components [15]–[18]. The approach we propose in this work is
meant to exploit the enhancement of light provided by resonant
cavities together with a mechanical microresonator to make the
performances of a semi-integrated QEPAS sensor comparable
with those obtained in free space. The integration of a laser
source on Silicon chips is today possible thanks to bonding
processes [19]. Therefore, the possibility of integrating all the
optical components of a QEPAS system on a Silicon chip, apart
from the QTF, could represent a promising alternative. Due
to some limitations of integrated waveguides, such as a small
confinement factor on cladding [20], it is not easy to achieve
performances comparable to the state-of-art QEPAS. Thus, a
feasibility study on semi-integrated versions of QEPAS setups
will be here presented and supported by numerical simulation
in COMSOL Multiphysics.

In this paper five different configurations, schematically de-
picted in Fig. 1, will be investigated and compared:

• FS-QEPAS (Free Space QEPAS): standard configuration with-
out mechanical resonators

• MR-QEPAS (Mechanical Resonator QEPAS): a free space
configuration using a mechanical microresonator to enhance
the pressure signal (state-of-art)

• SI-QEPAS (Semi-Integrated QEPAS): semi-integrated version
without mechanical resonators

• MRSI-QEPAS: (Mechanical Resonator, Semi-Integrated
QEPAS): semi-integrated version with a mechanical resonator

• OMRSI-QEPAS: (Optical and Mechanical Resonators, Semi-
Integrated QEPAS): semi-integrated version with a mechani-
cal resonator and an optical resonator

II. MACROSCOPIC MODELING OF PHOTOACOUSTIC WAVE

GENERATION

In photoacoustic spectroscopy, as well as in QEPAS, the
signal S obtained from the acoustic-electrical transducer, i.e. the
microphone or the tuning fork, is proportional to the absorption
coefficient α of the gas sample, the radiation-to-sound conver-
sion efficiency ε, the QTF quality factorQ and the optical power
P available from the laser source [4]:

S ≈ αQPε (1)

In order to design a semi-integrated version of the QEPAS
sensor with performances comparable with the standard QEPAS
systems, we initially try to model the soundwave generated by
photoacoustic effect starting from the fraction of optical power
interacting with the target gas. The light absorbed by the gas is
converted into a heat source (H) proportional to the absorbed
optical intensity I [21]

H (r̄, t) = αI (r̄, t) (2)

where α is the power absorption coefficient per unit length. The
generated heat H and the consequent energy relaxation gives
rise to acoustic waves. The Helmholtz equation in the harmonic
regime can be written as follows [1]:(

∇2 +
ω2

v2

)
p (r̄, ω) = − γ − 1

v2
jωH (r̄, ω) (3)
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where p is the local pressure, v is the local speed of sound, γ is
the ratio between the specific heat at constant volume (CV) and
the specific heat at constant pressure (CP) and ω is the angular
frequency of the laser excitation.

The solutions of the wave equations are determined by the
boundary conditions. In particular, the solution p can be ex-
pressed as an expansion over the modes pj with amplitudes Aj

[1]:

p (r̄, ω) =
∑

pj (r̄)Aj (ω) (4)

It can be found that under rigid-walls boundary conditions
(good approximation for the boundary condition of microres-
onators) [1]:

Aj (ω) =
−jω

ωj

2 [(γ − 1) /VC ] ∫ p∗jHdV

1− ω2

ω2
j
− j ω

ωjQj

(5)

whereωj is the resonance angular frequency of the j−th mechan-
ical resonant mode, Qj is the quality factor of the j−th mode, Vc

is the volume defined by the boundary conditions.
By approximating H as a two-dimensional Dirac-delta input

for the Helmholtz equation (possible if the linear dimensions of
the cross-section of the beam are much smaller than the acoustic
wavelength) and by considering z the direction of propagation
of the light beam we obtain:

H (r̄, t) = αPgasδ (x, y) (6)

with Pgas the fraction of the optical power interacting with the
target gas. Thus, eq (5) becomes:

Aj (ω) =
−jω

ωj

2 [(γ − 1) /SC ] p
∗
j (0, 0, z)αPgas

1− ω2

ω2
j
− j ω

ωjQj

(7)

with SC the area of the cross section delimited by the boundary
conditions. Using Eq. 4:

p=
∑

pjAj=αPgas

∑ −jω

ωj

2 [(γ − 1)/SC ] p
∗
j(0, 0, z)

1− ω2

ω2
j
− j ω

ωjQj

pj(r̄)

(8)
So, we obtained that the amplitude of the pressure, and thus

the QTF signal is proportional to the optical power interacting
with the target gas (Pgas).

In free space, all the power of the laser interacts with air,
whereas in integrated optical devices, the light is guided into
a medium, thus, only a small fraction of the power propagates
outside the guide as an evanescent wave and interacts with the
gas. The air confinement factor (Γgas) is defined as the fraction
of the power propagating in air (Pgas) divided by the total power
propagating through the waveguide (PP):

Γgas =
∫gas SzdS̄

∫total SzdS̄
=

Pgas

PP
(9)

with Sz the Poynting vector along the direction of propagation
z.

It means that with the same amount of power consumption and
under the same boundary conditions, the pressure amplitude p of
the sound wave, photoacoustically generated by the evanescent

Fig. 2. Light mode in waveguide-based structure for a waveguide width W =
600 nm and height H = 500 nm (a) and Confinement Factor Γgas for different
values of the widths of the waveguide (with H = 500 nm) for TE and TM
modes (b).

wave in waveguide-based structure, is Γgas times lower than the
wavefront pressure generated in free space.

Fig. 2(b) shows Γgas as a function of the width W of a Silicon
waveguide (for a standard waveguide height of 500 nm) for a
propagating radiation with a wavelength λ = 3345 nm, useful
for detecting methane and ethane in the mid-IR region [17]. As
it can be seen, the maximum achievable confinement factor is
around 18% for this kind of strip waveguides (Fig. 2(b)).

We considered that the dominant source of loss for this wave-
guide is due to the bulk loss in SiO2 (10 dB/cm at a wavelength of
3.345μm [22]). Consequently, the optimal waveguide design for
this application is a trade-off between the fraction of evanescent
power in air (Γgas) and the total loss of the waveguide. We chose
a width of 675 nm, for which the fraction of power in SiO2 is
27%, meaning a total propagation loss of 2.7 dB/cm (propagation
loss in Silicon is negligible).

Fig. 2(a) shows the designed waveguide (500 nm x 675 nm)
and the chosen mode (TE) that will be used for all the integrated
configurations in the next sections.

III. PERFORMANCE COMPARISON: FS-QEPAS VS SI-QEPAS

The key idea of this paper is to demonstrate that a semi-
integrated configuration of a QEPAS setup can potentially re-
place the standard free-space configuration making the space
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occupation much lower and eliminating any optical alignment
issue. As a first step, we simulated the photoacoustic generation
when a free-space laser beam propagates between the prongs
of a bare QTF (FS-QEPAS, Fig. 1(a)), which represents a
non-interactive element in the following analysis. Then, we com-
pared the FS-QEPAS model with a similar structure exploiting
an integrated waveguide on a Silicon chip (SI-QEPAS, Fig. 1(c)).
We performed the fully mechanical simulations by implement-
ing the Helmholtz equation (Eq. 3) on the “Pressure Acoustic,
Frequency Domain” module of COMSOL Multiphysics, with
the heat source H obtained by combining Eq. 6 and Eq. 9. The
wavelength selected is resonant with an optical transition related
to the C-H bond stretching of methane at 2989 cm−1 (3345 nm)
and having an absorption coefficient of α 12 cm−1 at a pressure
of 1 atm and a temperature of 296 K [23].

The QTF selected as a reference to model the non-interacting
probe in our design is a tuning fork having a resonance frequency
of 15.8 kHz, a prong thickness of 250μm, a prong spacing of 800
μm and thus slightly different from the one investigated in ref
[24], which has an enlarged prong spacing of 1.5 mm. The other
dimensions of the QTF have no influence on the simulations,
because the prong internal surfaces were treated as hard wall
boundary conditions. We used an implementation of Helmholtz
equation in COMSOL Multiphysics to simulate the pressure
signal generated from a heat source located between the free
ends of the QTF. In fact, the QTF is aligned so that the light beam
propagates perpendicular to the QTF plane and exactly centered
between the top of the prongs, where the vibrational antinode is
theoretically expected [3]. In the FS-QEPAS case, the light beam
has been simulated with an equivalent 100 μm radius uniform
power beam, whereas in the SI-QEPAS case, the light propagates
into a waveguide on the surface of an integrated chip (TE mode
of a 675 nm x 500 nm Silicon strip waveguide in Fig. 2(a)) and
has been simulated with an equivalent 0.5 μm-radius uniform
beam with equivalent power equal to PPΓgas. The length of the
waveguide has been varied between 400 μm and 1 mm. For
these lengths, the propagation losses due to SiO2 have not been
accounted into simulation, because negligible.

In both cases a total input power PP= 1 mW was considered.
Fig. 3(a) shows the pressure signal in static conditions (for non-
vibrating prongs) for a waveguide length L of 1 mm.

It is easy to appreciate that for the SI-QEPAS configuration,
the pressure signal in the proximity of the prongs is almost one
order of magnitude lower than in FS-QEPAS case.

IV. PERFORMANCES COMPARISON WITH MICRORESONATORS:
MR-QEPAS VS MRSI-QEPAS

The employment of acoustic resonator tubes has been widely
exploited in literature and in sensor prototypes to increase the
SNR of the piezoelectric signal. In the on-beam configuration, a
pair of tubes are aligned perpendicular to the QTF plane, with the
tube axes at the same height of the fundamental vibration mode
antinode and at a distance from the QTF typically of several
tens of micron [6]. Thus, when the modulated laser radiation
propagates through the dual tube system, a standing soundwave

Fig. 3. Acoustic pressure field, with optical power of 1mW without resonators
in FS-QEPAS configuration (a) and SI-QEPAS configuration (b).

is photoacoustically generated, with its pressure peak occurring
at the vibrational antinode between the prongs. The schematic
of the dual tube on-beam configuration, here referred as MR-
QEPAS, is shown in Fig. 1(b). acting as a micromechanical
resonator enhancing the pressure of the photoacoustic sound-
wave. This is the most used QEPAS configuration [6]. The
MR-QEPAS simulated for this investigation is composed of a
cylindrical microresonator open at its end faces. The distance
between the internal edges of the tubes was set to 310 μm to
accommodate a QTF for sensing the pressure variations. Each
tube is 10.3 mm long, with an inner diameter of 1.27 mm. These
tube dimensions demonstrated to provide the highest SNR when
acoustically coupled with a 15 kHz custom QTF [24].

The MR-QEPAS was then compared to a SI-QEPAS configu-
ration in which a closed micromechanical resonator was added
in order to obtain a further enhancement of the pressure in the
proximity of the QTF prongs. The micromechanical resonator
is made up of a closed semicylinder with a central gap where
the QTF is located. If the laser radiation is delivered through the
micro mechanical resonator by means of a feeding bus, the light
can be coupled again to the waveguide so that the Γgas portion
of the input power can interact with the target gas over a length
L (Fig. 1(d), MRSI-QEPAS). The size of the gap at the center
of the microresonator is the same as in the MR-QEPAS). The
inner diameter of the semicylindrical resonator is 1.27 mm and
the total microresonator length is 2 mm.
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Fig. 4. Acoustic pressure field, with optical power of 1mW without resonators
in the MRQEPAS configuration (a) and MRSI-QEPAS configuration (b).

We simulated and compared the pressure signal per input
power obtained at the base of the QTF prongs between the
MR-QEPAS and the semi-integrated version MRSI-QEPAS.
The light beams were simulated as indicated in the previous
paragraph. The colormaps in Figs. 4(a) and 4(b) show the pres-
sure signal for input power of 1 mW on the central cross-section
for both the configurations (with L = 1mm in the MRSI-QEPAS
case).

In the case of MRSI-QEPAS, since the system is closed, all
the optical power absorbed should be converted into a pressure
signal. Through an energetic approach it is possible to find the
dependence of the pressure signal on the length of the absorption
path in the MRSI-QEPAS (approximation of closed system). In
particular, when considering an optical mode propagating in an
integrated waveguide, the fraction (Pabs,int) of the total power
propagating in the waveguide (PP) that has been absorbed by the
target gas over a length L (in the hypothesis of small absorption)
is [25]:

Pabs,int ≈ PPΓgasαL. (10)

Consequently, in MRSI-QEPAS we expect p to be propor-
tional to the length of absorption L. The simulation results con-
firm that the pressure amplitude per input power varies linearly
with the absorption length.

As it is possible to see in Fig. 5, the pressure signal obtained
in MRSI-QEPAS is one order of magnitude lower than in the
MR-QEPAS.

Fig. 5. Pressure signal per input power (S) as a function of the length of the
waveguide in the SI-QEPAS and MRSI-QEPAS compared to the pressure signal
per input power in QEPAS and MR-QEPAS.

However, the guidance of the laser light can be further and
more effectively exploited by implementing an optical resonant
cavity to be directly coupled with the waveguide modeled and
simulated in SI-QEPAS and MRSI-QEPAS configurations.

V. OPTICAL RESONANT ENHANCEMENT: OMRSI-QEPAS

The results of the previous paragraphs showed that the inte-
grated solutions (SI-QEPAS and MRSI-QEPAS) produce a pres-
sure signal one order of magnitude lower than the corresponding
free space configurations (QEPAS and MR-QEPAS).

In order to achieve better performances in terms of signal am-
plitude with a semi-integrated setup, we propose to implement an
optical-resonant-cavity architecture in the MRSI-QEPAS, with
the aim of increasing the optical power interacting with the
gas target starting from the same input power simulated in the
previous configurations. The modification to the MRSI-QEPAS
setup is shown in Fig. 1(e). It is possible to see that an optical
resonator is fed by an optical bus. The racetrack resonator is
designed to have a total length L and a gap between the two
long-side waveguide of 80 μm (bend radius of 40 μm).

It is easy to demonstrate that the enhancement factor EF, cal-
culated as the ratio between the power circulating into a section
of the cavity (Pcav) (modulated at the resonance frequency of
the tuning fork) and the input power within the feeding bus (PP)
is [26]:

EF =
Pcav

PP
=

e−αwgLκ2(
1− e−

αwg
2 L

√
1−κ2

)2 ≈ 4κ2

(αwgL+ κ2)2

(11)
with κ2 the nondimensional power coupling efficiency between
a feeding waveguide and the resonator.

In order to estimate the enhancement factor, we considered the
propagation loss already estimated (2.7 dB/cm) and bend losses.
We estimated the bend losses by evaluating the superposition
of the optical mode in the straight waveguide and in the bent
waveguide (equal to 99.6%, with a curvature radius of 40 μm).

BL = −4interfaces10 log10 (0.9966) = 0.013 dB (12)
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TABLE I
PARAMETERS OF THE OPTICAL RESONATOR

Fig. 6. Enhancement factor as a function of κ for different values of L (a) and
enhancement factor as a function of L for different values of κ, with estimated
loss αwg = 0.69 dB/cm.

We obtained a bend loss around 0.013 dB per roundtrip
(0.013dB/L, with L the length of the resonator). So, αwg = 2.7
dB/cm + 0.013 dB/L.

The parameters of the final designed resonator are summa-
rized in Table I.

Fig. 6 shows the enhancement factor as a function of the
coupling efficiency and the length L of the resonator.

By properly designing the distance dgap between the feeding
bus and the resonator, the power coupling efficiency κ2 can
be calculated end engineered through the following expression

Fig. 7. Pressure signal per input power (S) over a central cross section in
OMRSI-QEPAS (a) and Pressure signal per input power (S) as a function of the
length of the waveguide in OMRSI-QEPAS, compared with MR-QEPAS (b).

(valid for straight couplers) [27]:

κ2 = sin2
(
πLcpΔn (dgap)

λ

)
(13)

Here Δn(dgap) is the difference between the effective indices
of the even and the odd modes in the coupling region, where the
evanescent coupling between feeding bus and resonator takes
place. Lcp is the length of the coupling region and λ is the
wavelength of input light. Fig. 7(a) shows the pressure amplitude
at a central cross section obtained for an optical resonator with
a length of L = 1 mm in an OMRSI-QEPAS configuration.
Fig. 7(b) shows the performance of the OMRSI-QEPAS as a
function of L at different values ofκ, compared with the pressure
value obtained with MR-QEPAS. As it can be easily argued
from the figure, in an OMRSI-QEPAS configuration compa-
rable or higher-pressure values for the sound wavefront can
be achieved with respect to a standard MR-QEPAS approach.
Table II summarizes the peak pressure signals obtained for
each simulated configuration. The obtained results demonstrate
that an integrated configuration of QEPAS (in particular the
OMRSI-QEPAS) can exceed the performances of the state-of-art
QEPAS configurations. The use of optical enhancement can
overcome the problem of a low air confinement factor thanks
to the use of optical resonators.
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TABLE II
COMPARISON OF SIGNAL AMPLITUDE FOR DIFFERENT CONFIGURATIONS

Fig. 8. Final configuration of the OMRSI-QEPAS setup.

Fig. 8 shows the final configuration of the OMRSI-QEPAS
setup. Thanks to the possibility of bonding an external laser to
a SOI chip, it is possible to feed the optical resonator through
a feeding optical bus entering the mechanical resonator. The
laser source should be placed sufficiently distant from the me-
chanical resonator and the QTF to guarantee an effective heat
dissipation/cooling and avoid that temperature gradients in the
gas affect the photoacoustic generation and response.

As for the fabrication process, the initial step would be to etch
the waveguides and the resonator on a standard Si/SiO2 chip (500
nm of Silicon layer). Then, the external laser would be bonded
upon the SOI chip, which can be mounted inside an HHL-like
package. As for the mechanical resonator, the simplest approach
would be to mechanically bond it to the SOI chip. Finally, the
QTF would be connected from the base to the upper enclosure
of the packaging and then coupled with the ring resonator upside
down. We want to underline that the approach we propose can be
extended to other platforms different from Si/SiO2 (for example
on InP platform) where it can be possible to monolithically grow
the laser upon the chip.

VI. CONCLUSION

In this work, we demonstrated that using an integrated chip
approach for QEPAS sensing could represent a valid alternative
to standard QEPAS, making the sensor smaller and more sta-
ble, avoiding any optical alignment and allowing comparable
or better performances to be achieved. Despite a limited air

confinement factor of integrated Silicon waveguides for a wave-
length of 3.345 μm, the use of a mechanical microresonator
and optical resonant enhancement would provide a pressure
amplitude higher than the standard free space on-beam QEPAS
(MR-QEPAS) with the same power consumption. We believe
that the proposed device represents a promising solution for
miniaturizing the dimensions of a QEPAS sensor, since all the
optical parts could be integrated on a chip, except for the quartz
tuning fork.
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