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STEP-INDEX CIRCULAR WAVEGUIDES
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A circular waveguide consists of two concentric dielectric cylinders, the core and the
cladding..
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The core has a refractive index 𝑛(𝑟) and a bore radius 𝑎. 

The cladding has a refractive index 𝑛2 with 𝑛 (𝑟) > 𝑛2 and a radius > 𝑎.

The cladding layer is usually covered with a plastic (buffer) coating to protect the fiber

from environmental hazards and abrasion.

The principle of light propagation through a fiber (guided light) is based on total
internal reflection at the core-cladding interface, caused the difference in
refractive indices of core and cladding.

Let us assume that the light is guided inside the core by total reflection
at the core-cladding interface, what is the acceptance angle within
which the light waves can be launched into the fiber in order to have
total reflection?
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The concept of acceptance angle is based on ray tracing and refraction.

A ray is shown entering the edge of the waveguide with an angle 𝜃0, where we assume

the index of refraction corresponds to that of air (essentially 𝑛𝑎𝑖𝑟 = 1)

By considering the right triangle ABC in the Picture:

𝜃𝑐 = 90° − 𝜃1

By substituting this expression in the Snell's law:

𝑠𝑒𝑛𝜃0 = 𝑛1𝑐𝑜𝑠𝜃𝑐

Consider the optical waveguide
shown in the picture, where a high
index layer with index 𝑛1 (the
core), is surrounded symmetrically
by a lower index medium 𝑛2 (the
cladding)

We want to explore how light (in the form of rays) can couple into the end of such a
structure.

𝑠𝑒𝑛𝜃0 = 𝑛1𝑠𝑒𝑛𝜃1The entering ray is refracted according to Snell's law
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Being 𝜃𝑐 < 180°, then 𝑐𝑜𝑠𝜃𝑐 = 1 − 𝑠𝑒𝑛2𝜃𝑐, and so:

𝑠𝑒𝑛𝜃0 = 𝑛1 1 − 𝑠𝑒𝑛2𝜃𝑐 𝑠𝑒𝑛𝜃0 = 𝑛1𝑐𝑜𝑠𝜃𝑐

If 𝜃𝑐 is assumed to be the critical angle for total internal reflection at the core-

cladding interface, we can apply Snell’s law at the core-cladding interface:

𝑛1𝑠𝑒𝑛𝜃𝑐 = 𝑛2𝑠𝑒𝑛90° = 𝑛2

Then:

𝑠𝑒𝑛𝜃𝑐 =
𝑛2
𝑛1
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𝑠𝑒𝑛𝜃0 = 𝑛1 1 − 𝑠𝑒𝑛2𝜃𝑐
By combining the two expressions:

𝑠𝑒𝑛𝜃0 = 𝑛1 1 −
𝑛2

2

𝑛1
2 = 𝑛1

2 − 𝑛2
2

The numerical aperture is defined as the sine of the acceptance angle 𝜃0 that

gives total internal reflection at the core-cladding interface :

𝑁𝐴 = 𝑛1
2 − 𝑛2

2

𝑠𝑒𝑛𝜃𝑐 =
𝑛2
𝑛1
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𝑠𝑒𝑛𝜃0 = 𝑛1 1 − 𝑠𝑒𝑛2𝜃𝑐

The refractive index of the core can be not costant along the radial dimension: in this
case, 𝑛1can be expressed as a function of the fiber radius 𝑟, con 0 ≤ 𝑟 ≤ 𝑎.

Thus, we have two different cases:

o Step-Index Profile. The refractive index profile is characterized by a uniform

refractive index within the core and a sharp decrease in refractive index at the

core-cladding interface so that the cladding is of a lower refractive index.

𝑛1 𝑟 = 𝑛1

o Graded-Index Profile. The core has a refractive index that decreases with

increasing radial distance from the optical axis of the fiber. In this case, 𝑛1 𝑟 is

usually approximated with the following relation:

𝑛1 𝑟 = 𝑛1 + 𝑛2 − 𝑛1
𝑟

𝑎

𝛼

If 𝛼 = 1, 𝑛1 𝑟 linearly varies within the core.

If 𝛼 = 2, 𝑛1 𝑟 varies quadratically within the core
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𝑠𝑒𝑛𝜃0 = 𝑛1 1 − 𝑠𝑒𝑛2𝜃𝑐

To find the modes of the circular step-index fiber, we must solve the Maxwell’s wave

equations in cylindrical coordinates.

The modes of the cylindrical structure are more abstract than those of the planar
structure.

The wave equation for guided light within a fiber can be obtained by solving Maxwell's
equations, with imposition of reasonable boundary conditions related to the geometry
of the medium.

Before recall the Maxwell’s equations, let us suppose:

o no charge sources (𝜌 = 0 e 𝑗 = 0);

Not only are they circular in symmetry which will require a more complicated
solution to the wave equation, but they are two dimensional, so there will be two mode
numbers.

o linear medium (the electric permittivity 𝜖 as well as the magnetic

permeability 𝜇 are nondependent on the electric field 𝐸 and the

magnetic field 𝐻, respectively);

o isotropic medium.



1.2 SCALAR HELMHOTZ EQUATION

10

STEP-INDEX 

CIRCULAR 

WAVEGUIDES

𝑠𝑒𝑛𝜃0 = 𝑛1 1 − 𝑠𝑒𝑛2𝜃𝑐

With these conditions superimposed, the Maxwell’s equations are:

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡

𝛻 × 𝐻 =
𝜕𝐷

𝜕𝑡

𝛻 ∙ 𝐷 = 0

𝛻 ∙ 𝐵 = 0

where 𝐸 e 𝐻 are the electric and magnetic field, respectively, and 𝐵 = 𝜇𝐻 and 𝐷 = 𝜖𝐸.

These equations describe the propagation of the electric field and the magnetic
field over time and space.

The equations are strongly coupled to each other.

Let us combine Maxwell’s equations to obtain a second order

differential equation for a single field (𝐸 e 𝐻).

𝐷 is known as electric displacement field and 𝐻 as auxiliary magnetic field.



1.2 SCALAR HELMHOTZ EQUATION

11

STEP-INDEX 

CIRCULAR 

WAVEGUIDES

Let us take the curl of both sides of first Maxwell’s equation:

𝛻 × 𝛻 × 𝐸 = 𝛻 × −
𝜕𝐵

𝜕𝑡
= 𝛻 × −

𝜕𝜇𝐻

𝜕𝑡
𝛻 × 𝐸 = −

𝜕𝐵

𝜕𝑡

𝐵 = 𝜇𝐻
If 𝜇 is not time-dependent:

𝛻 × 𝛻 × 𝐸 = −𝜇 𝛻 ×
𝜕𝐻

𝜕𝑡

Since 𝐻 is a continous function, we can commutate the curl with the partial time

derivative:

𝛻 × 𝛻 × 𝐸 = −𝜇
𝜕

𝜕𝑡
𝛻 × 𝐻

Now we can use the Maxwell’s equation for the curl of magnetic field 𝛻 × 𝐻 :

𝛻 × 𝐻 =
𝜕𝐷

𝜕𝑡𝛻 × 𝛻 × 𝐸 = −𝜇
𝜕

𝜕𝑡

𝜕𝐷

𝜕𝑡
= −𝜇𝜖

𝜕2𝐸

𝜕𝑡2
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𝛻 × 𝛻 × 𝐸 = −𝜇
𝜕

𝜕𝑡

𝜕𝐷

𝜕𝑡
= −𝜇𝜖

𝜕2𝐸

𝜕𝑡2

Let us the following vector identity for the first side, which is true for any vector:

𝛻 × 𝛻 × 𝐸 = 𝛻 𝛻 ∙ 𝐸 − 𝛻2𝐸

where 𝛻2 is the Laplace operator.

𝛻2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2

If 𝜖 is constant, by using the Maxwell’s equation 𝛻 ∙ 𝐷 = 0 , we can assume that the

divergence of the electric field is zero 𝛻 ∙ 𝐸 = 0.

𝛻2𝐸 − 𝜇𝜖
𝜕2𝐸

𝜕𝑡2
= 0

Thus: 𝛻 × 𝛻 × 𝐸 = −𝛻2𝐸

By inserting this last expression in the first equation on the top the slide we

can obtain the differential omogeneuos equation for the electric field 𝐸.

In a Cartesian coordinate system, the Laplacian is given by the sum of second partial 
derivatives of the function with respect to each independent variable:
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Starting from the other Maxwell’s equation 𝛻 × 𝐻 =
𝜕𝐷

𝜕𝑡
, with same steps as before we

can obtain a second-order differential omogeneous equation for the magnetic field:

𝛻2𝐻 − 𝜇𝜖
𝜕2𝐻

𝜕𝑡2
= 0

Let us suppose separation of space and time variables of 𝐸 and assume a time-harmonic

dependence with an angular frequency 𝜔

𝐸 Ԧ𝑟, 𝑡 = 𝐸 Ԧ𝑟 𝑒𝑖𝜔𝑡

By imposing 𝐸 Ԧ𝑟, 𝑡 as a solution of the omogeneous equation:

𝑒𝑖𝜔𝑡𝛻2𝐸 Ԧ𝑟 + 𝜇𝜖𝜔2𝐸 Ԧ𝑟 𝑒𝑖𝜔𝑡 = 0

𝛻2𝐸 − 𝜇𝜖
𝜕2𝐸

𝜕𝑡2
= 0

In an homogeneuos medium, the wavevector 𝑘 is related to the refractive index

𝑛 by the relation:

𝑘 = 𝜔 𝜇𝜖 = 𝑘0𝑛

Finally, we obtain the scalar Helmhotz equation for 𝐸 :

𝛻2𝐸 Ԧ𝑟 + 𝑘𝑜
2𝑛2𝐸 Ԧ𝑟 = 0

where 𝑘0 is the wavevector in vacuum
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To solve the scalar Helmhotz equation in a cylindrical waveguide, we must write this
equation in cylindrical coordinates.

The electric field is a vector, and there are three components, each of which

is a function of 𝑟, 𝜙 e 𝑧

𝐸 𝑟, 𝜙, 𝑧 = Ƹ𝑟𝐸𝑟 𝑟, 𝜙, 𝑧 + ෠𝜙𝐸𝜙 𝑟, 𝜙, 𝑧 + Ƹ𝑧𝐸𝑧 𝑟, 𝜙, 𝑧

𝛻2𝐸 Ԧ𝑟 + 𝑘𝑜
2𝑛2𝐸 Ԧ𝑟 = 0

𝑟

𝑧𝜙
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Unlike the vector Laplacian in rectilinear coordinates, 𝛻2 in cylindrical coordinates can
not be easily decomposed into three individual components.

This because the transverse components Ƹ𝑟 e ෠𝜙 of the field are tightly coupled.

Imagine for example a linearly-polarized field travelling at a slight angle to the axis of a

cylindrical waveguide, as shown in the picture

It is impossible to decouple 𝐸𝑟 e 𝐸𝜙 components.

Here is the critical point in understanding the analysis of a two-dimensional
waveguide: only the Ƹ𝑧 -component of a field, 𝐸𝑧, does not couple to other
components as it propagates.

Even after reflection at a cylindrical surface, the 𝐸𝑧 component
remains oriented along the Ƹ𝑧 -axis. .

At 𝑧 = 0, the field is purely radial, but as it travels down the axis, it becomes an

azimuthal ( ෠𝜙 ) field.
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o 𝐸𝑧 𝑟, 𝜙, 𝑧 and 𝐻𝑧 𝑟, 𝜙, 𝑧 are longitudinal fields,

o 𝐸𝑟 𝑟, 𝜙, 𝑧 and 𝐸𝜙 𝑟, 𝜙, 𝑧 , 𝐻𝑟 𝑟, 𝜙, 𝑧 and 𝐻𝜙 𝑟, 𝜙, 𝑧 are transverse fields

Since 𝐸𝑧 couples only to itself, it is possible to write the scalar wave equation

for 𝐸𝑧 directly in cylindrical coordinates:

1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝐸𝑧
𝜕𝑟

+
1

𝑟2
𝜕2𝐸𝑧
𝜕𝜙2 +

𝜕2𝐸𝑧
𝜕𝑧2

+ 𝑘0
2𝑛2𝐸𝑧 = 0

Hence, we will attempt to find a solution for 𝐸𝑧 using the wave equation.

Once we have a solution for 𝐸𝑧 𝑟, 𝜙, 𝑧 ,we can use Maxwell's equations to relate
𝐸𝑧 to 𝐸𝑟 𝑟, 𝜙, 𝑧 and 𝐸𝜙 𝑟, 𝜙, 𝑧

The longitudinal component of the electric field 
does not change through either propagation or 

reflection at the cylindrical surface.

𝛻2𝐸 Ԧ𝑟 + 𝑘𝑜
2𝑛2𝐸 Ԧ𝑟 = 0
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Since 𝐸𝑧 is a function of 𝑟, 𝜙 e 𝑧, we can employ separation of variables to solve the

scalar equation. Thus we can set 𝐸𝑧 𝑟, 𝜙, 𝑧 as:

𝐸𝑧 𝑟, 𝜙, 𝑧 = 𝑅 𝑟 Φ 𝜙 𝑍(𝑧)

Substituting this in the Helmhotz equation: 1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝐸𝑧
𝜕𝑟

+
1

𝑟2
𝜕2𝐸𝑧
𝜕𝜙2

+
𝜕2𝐸𝑧
𝜕𝑧2

+ 𝑘0
2𝑛2𝐸𝑧 = 0

𝑅′′ΦZ +
1

𝑟
𝑅′ΦZ +

1

𝑟2
𝑅Φ′′Z + 𝑅ΦZ′′ + 𝑘𝑜

2𝑛2𝑅ΦZ = 0

Multiply both sides by: 
𝑟2

𝑅ΦZ
:

𝑟2
𝑅′′

𝑅
+ r

𝑅′

𝑅
+
Φ′′

Φ
+ 𝑟2

Z′′

𝑍
+ 𝑘𝑜

2𝑛2𝑟2 = 0

The term
Z′′

𝑍
depends neither on 𝜙 nor on 𝑟, thus we can assume that it

is proportional to a constant value:
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Z′′

𝑍
= −𝛽2

The solution of this differential equation are plane waves:

𝑍 𝑧 = 𝐵𝑒−𝑖𝛽𝑧

where 𝛽 is the Ƹ𝑧 - component of the wavevector 𝑘 in the waveguide.

We can substitute
Z′′

𝑍
= −𝛽2 into the wave equation:

𝑟2
𝑅′′

𝑅
+ r

𝑅′

𝑅
+
Φ′′

Φ
− 𝑟2𝛽2 + 𝑘𝑜

2𝑛2𝑟2 = 0

𝑟2
𝑅′′

𝑅
+ r

𝑅′

𝑅
+
Φ′′

Φ
+ 𝑟2

Z′′

𝑍
+ 𝑘𝑜

2𝑛2𝑟2 = 0

We can use the same procedure also for the term
Φ′′

Φ
:

𝑟2
𝑅′′

𝑅
+ r

𝑅′

𝑅
− 𝑟2𝛽2 + 𝑘𝑜

2𝑛2𝑟2 = −
Φ′′

Φ
= 𝜐2

where 𝜐2 has a constant value. 
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The equation −
Φ′′

Φ
= 𝜐2 can be solved directly for Φ 𝜙 :

Φ 𝜙 = 𝐴𝑒𝑖𝜐𝜙

where 𝐴 is a normalization constant.

Substituting Φ 𝜙 = 𝐴𝑒𝑖𝜐𝜙 into the wave equation

yields an equation that only contains 𝑅(𝑟) :

𝑟2
𝜕2𝑅

𝜕𝑟2
+ 𝑟

𝜕𝑅

𝜕𝑟
+ 𝑟2 𝑘0

2𝑛2 − 𝛽2 −
𝜐2

𝑟2
𝑅 = 0

𝑟2
𝑅′′

𝑅
+ r

𝑅′

𝑅
− 𝑟2𝛽2 + 𝑘𝑜

2𝑛2𝑟2 = 𝜐2

The solutions to this differential equation is given by Bessel functions.

o When the argument 𝑘0
2𝑛2 − 𝛽2 −

𝜐2

𝑟2
> 0, solutions are Bessel

Functions of the First Kind of Order 𝒗, usually simbolized as

𝐽𝜈(𝜅𝑟), where 𝜅2 = 𝑘𝑜
2𝑛2 − 𝛽2

Since circular symmetry requires: Φ 𝜙 = Φ 𝜙 + 2𝜋 , 𝜐 must be an integer.
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o When 𝑘0
2𝑛2 − 𝛽2 −

𝜐2

𝑟2
< 0, solutions are Modified Bessel Functions of the

Second Kind of Order 𝒗, usually simbolized as 𝐾𝜈(𝛾𝑟) where 𝛾2 = 𝛽2 − 𝑘𝑜
2𝑛2

Now, let us comment the trend of both kinds of Bessel functions.

Plots of both types of Bessel function are shown in the following picture. 

𝑟2
𝜕2𝑅

𝜕𝑟2
+ 𝑟

𝜕𝑅

𝜕𝑟
+ 𝑟2 𝑘0

2𝑛2 − 𝛽2 −
𝜐2

𝑟2
𝑅 = 0
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The 𝐽𝜈(𝜅𝑟) functions are periodic along the radial axis. 

Only 𝐽0(𝜅𝑟) has finite value at a 𝑟 = 0, all others
𝐽𝜈≠0(𝜅𝑟) functions are zero at the origin.

For large arguments 𝜅𝑟, the Bessel function of the first 
kind can be approximated as:

𝐽𝜈 𝜅𝑟 ≈
2

𝜋𝜅𝑟
𝑐𝑜𝑠 𝜅𝑟 −

𝜈𝜋

2
−
𝜋

4

These Bessel functions can be viewed as damped sine waves. 

The amplitude decreases slowly with radial distance, much like the amplitude of
a spreading wave in a pond.

As we shall see, the 𝐽𝜈(𝜅𝑟) Bessel functions describe the radial standing

wave in a cylindrical structure.
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The modified Bessel functions 𝐾𝜈(𝛾𝑟) display a monotonic decreasing characteristic. 

The higher orders of the function decrease at a slower
rate, but all orders have the same functional form.

In the limit of large 𝛾𝑟 , the functions can be

approximated as:

𝐾𝜈 𝛾𝑟 ≈
𝑒−𝛾𝑟

2𝜋 𝛾𝑟

Again, this looks like a radially damped exponentially decreasing function.

Note that at large distance, all orders of 𝐾𝜈(𝛾𝑟) look approximately the same.

The
1

2𝜋 𝛾𝑟
dependence is the natural decrease of a wave as it expands

with radius, while the exponent represents decay due to evanescent
interference.

𝐾𝜈(𝛾𝑟) functions are used to describe evanescent fields in the
optical waveguide.
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In this and the next section, we derive expressions for the fields and the characteristic
equation for the cylindrical dielectric waveguide.

Since we expect oscillatory solutions to the transverse wave
equation in the core, 𝐽𝜈(𝜅𝑟) solutions will be sought in this region.

From the analysis above we can see that an oscillatory solution only occurs when 𝛽

satisfies:

𝑘0𝑛𝑐𝑜𝑟𝑒 > 𝛽 > 𝑘0𝑛𝑐𝑙𝑎𝑑

Outside the higher index core, the field exponentially decays, so we choose
the 𝐾𝜈(𝛾𝑟) solutions for 𝑟 > 𝑎.

The only criteria on the size of the cladding is that the evanescent
field should decay to negligible values long before the outer radius of
the cladding is reached.

Consider a waveguide with a core of radius 𝑎 surrounded by a cladding 
with lower index.  

𝑘0
2𝑛2 − 𝛽2 −

𝜐2

𝑟2
> 0
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Let's construct a solution to the wave equation. 

The complete longitudinal fields 𝐸𝑧 𝑟, 𝜙, 𝑧 e 𝐻𝑧 𝑟, 𝜙, 𝑧 in both regions can be written

as:

𝐸𝑧 𝑟, 𝜙, 𝑧 = ൝
𝐴𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐶𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎

𝐻𝑧 𝑟, 𝜙, 𝑧 = ൝
𝐵𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐷𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎

Note that the electric and magnetic fields have the same spatial dependence.

Also note that 𝑣 is a mode number, or eigenvalue.

Determining the coefficients 𝐴, 𝐵, 𝐶 and 𝐷 equires application of the

boundary conditions, specifically, continuity of the tangential 𝐸 and 𝐻
fields.

These steps involve a lot of mathematics but are necessary for 
finding the eigenvalue equation of the step index fiber. 
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Boundary conditions for longitudinal fields

𝐸𝑧 𝑟, 𝜙, 𝑧 e 𝐻𝑧 𝑟, 𝜙, 𝑧 at 𝑟 = 𝑎 are: 𝐸𝑧 𝑟, 𝜙, 𝑧 = ൝
𝐴𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐶𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎

𝐻𝑧 𝑟, 𝜙, 𝑧 = ൝
𝐵𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐷𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎

We need two more equations in order to have a resolvable equation systems
composed by 4 equations with the 4 coefficients 𝐴, 𝐵, 𝐶 e 𝐷 .

Thus, together with boundary conditions for longitudinal field, we need to
impose boundary conditions also for azimuthal field components 𝐸𝜙 e 𝐻𝜙.

To do that, we need to find an expression for both azimuthal fields.

𝐴𝐽𝜈 𝜅𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 = 𝐶𝐾𝜈 𝛾𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝐵𝐽𝜈 𝜅𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 = 𝐷𝐾𝜈 𝛾𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

In the next slide, the procedure will be described.

For a complete description (with calculations), refer to the book «Allen H.
Cherin, An Introduction to Optical Fibers, McGraw-Hill Book Co., New York
(1983) «
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1. From Maxwell’s equations:

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
= −𝜇

𝜕𝐻

𝜕𝑡
= −𝜇𝑖𝜔𝐻 = −𝜇𝑖𝜔 Ƹ𝑟𝐻𝑟 + ෠𝜙𝐻𝜙 + Ƹ𝑧𝐻𝑧

2. Expand 𝛻 × 𝐸 term in cylindrical components :

𝛻 × 𝐸 =
1

𝑟

𝜕𝐸𝑧
𝜕𝜙

−
𝜕𝐸𝜙

𝜕𝑧
Ƹ𝑟 +

𝜕𝐸𝑟
𝜕𝑧

−
𝜕𝐸𝑧
𝜕𝑟

෠𝜙 +
𝜕 𝑟𝐸𝜙

𝜕𝑟
−
𝜕𝐸𝑟
𝜕𝜙

Ƹ𝑧

3. After collecting terms, the field components 𝐻𝑟, 𝐸𝑟, 𝐸𝜙 and 𝐻𝜙 can be described in

terms of the longitudinal components 𝐸𝑧 e 𝐻𝑧

𝐸𝜙 =
−𝑖

𝛼2
𝛽

𝑟

𝜕𝐸𝑧
𝜕𝜙

− 𝜇𝜔
𝜕𝐻𝑧
𝜕𝑟

𝐸𝑟 =
−𝑖

𝛼2
𝜇𝜔

𝑟

𝜕𝐻𝑧
𝜕𝜙

+ 𝛽
𝜕𝐸𝑧
𝜕𝑟

𝐻𝜙 =
−𝑖

𝛼2
𝜔𝜖

𝜕𝐸𝑧
𝜕𝑟

+
𝛽

𝑟

𝜕𝐻𝑧
𝜕𝜙 𝐻𝑟 =

−𝑖

𝛼2
𝛽
𝜕𝐻𝑧
𝜕𝑟

−
𝜖𝜔

𝑟

𝜕𝐸𝑧
𝜕𝜙

where 𝛼2 = 𝑘0
2𝑛2 − 𝛽2

Note that 𝛼2 is a positive quantity in the core, and a negative
quantity in the cladding for allowed values of 𝛽.
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𝑬𝒛 𝑟, 𝜙, 𝑧 = ൝
𝐴𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐶𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎

𝑯𝒛 𝑟, 𝜙, 𝑧 = ൝
𝐵𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐷𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎

𝑬𝝓 =
−𝑖

𝛼2
𝛽

𝑟

𝜕𝑬𝒛
𝜕𝜙

− 𝜇𝜔
𝜕𝑯𝒛

𝜕𝑟

𝑬𝒓 =
−𝑖

𝛼2
𝜇𝜔

𝑟

𝜕𝑯𝒛

𝜕𝜙
+ 𝛽

𝜕𝑬𝒛
𝜕𝑟

𝑯𝝓 =
−𝑖

𝛼2
𝜔𝜖

𝜕𝑬𝒛
𝜕𝑟

+
𝛽

𝑟

𝜕𝑯𝒛

𝜕𝜙

𝑯𝒓 =
−𝑖

𝛼2
𝛽
𝜕𝑯𝒛

𝜕𝑟
−
𝜖𝜔

𝑟

𝜕𝑬𝒛
𝜕𝜙

Longitudinal components 

Radial and azimuthal components as a 

function of the longitudinal 

components 

Inserting the longitudinal fields 𝐸𝑧 e 𝐻𝑧 into the expressions for 𝐻𝑟, 𝐸𝑟,
𝐸𝜙 and 𝐻𝜙, the radial and azimuthal fields can be exactly calculated.
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In the core region: 𝑟 < 𝑎

𝑬𝒓 =
−𝑖𝛽

𝜅2
𝐴𝜅𝐽′𝜈 𝜅𝑟 +

𝑖𝜔𝜇𝜐

𝛽𝑟
𝐵𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝑬𝝓 =
−𝑖𝛽

𝜅2
𝑖𝜐

𝑟
𝐴𝐽𝜈 𝜅𝑟 −

𝜔𝜇

𝛽
𝐵𝜅𝐽′𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝑯𝒓 =
−𝑖𝛽

𝜅2
𝐵𝜅𝐽′𝜈 𝜅𝑟 −

𝑖𝜔𝜖𝑐𝑜𝑟𝑒𝜐

𝛽𝑟
𝐴𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝑯𝝓 =
−𝑖𝛽

𝜅2
𝑖𝜐

𝑟
𝐵𝐽𝜈 𝜅𝑟 +

𝜔𝜖𝑐𝑜𝑟𝑒
𝛽

𝐴𝜅𝐽′𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

In the cladding region: 𝑟 > 𝑎

𝑬𝒓 =
𝑖𝛽

𝛾2
𝐶𝛾𝐾′𝜈 𝛾𝑟 +

𝑖𝜔𝜇𝜐

𝛽𝑟
𝐷𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝑬𝝓 =
𝑖𝛽

𝛾2
𝑖𝜐

𝑟
𝐶𝐾𝜈 𝛾𝑟 −

𝜔𝜇

𝛽
𝐷𝛾𝐾′𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝑯𝒓 =
𝑖𝛽

𝛾2
𝐷𝛾𝐾′𝜈 𝛾𝑟 −

𝑖𝜔𝜖𝑐𝑙𝑎𝑑𝜐

𝛽𝑟
𝐶𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝑯𝝓 =
𝑖𝛽

𝛾2
𝑖𝜐

𝑟
𝐷𝐾𝜈 𝛾𝑟 +

𝜔𝜖𝑐𝑙𝑎𝑑
𝛽

𝐶𝛾𝐾′𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝐽′𝜈 𝜅𝑟 =
𝑑𝐽𝜈 𝜅𝑟

𝑑𝜅𝑟

with 

𝐾′𝜈 𝜅𝑟 =
𝑑𝐾𝜈 𝜅𝑟

𝑑𝜅𝑟

with 
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To determine 𝛽, and the coefficients, 𝐴, 𝐵, 𝐶,
and 𝐷 , we need to apply the boundary
conditions.

𝐴𝐽𝜈 𝜅𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 = 𝐶𝐾𝜈 𝛾𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝐵𝐽𝜈 𝜅𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 = 𝐷𝐾𝜈 𝛾𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

The boundary conditions at 𝑟 = 𝑎 require that the four tangential components, 𝐻𝑟, 𝐸𝑟,
𝐸𝜙 and 𝐻𝜙 be continuous at the core-cladding boundary.

The boundary condition for 𝐸𝜙 is: 𝑬𝝓 =

−𝑖𝛽

𝜅2
𝑖𝜐

𝑟
𝐴𝐽𝜈 𝜅𝑟 −

𝜔𝜇

𝛽
𝐵𝜅𝐽′𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 𝑟 < 𝑎

𝑖𝛽

𝛾2
𝑖𝜐

𝑟
𝐶𝐾𝜈 𝛾𝑟 −

𝜔𝜇

𝛽
𝐷𝛾𝐾′𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 𝑟 > 𝑎

𝛽𝜐

𝜅2𝑎
𝐴𝐽𝜈 𝜅𝑎 +

𝑖𝜔𝜇

𝜅
𝐵𝐽′𝜈 𝜅𝑎 = −

𝛽𝜐

𝛾2𝑎
𝐶𝐾𝜈 𝛾𝑎 −

𝑖𝜔𝜇

𝛾
𝐷𝐾′𝜈 𝛾𝑎

and for 𝐻𝜙 :

−𝑖
𝜔𝜖𝑐𝑜𝑟𝑒
𝜅

𝐴𝐽′𝜈 𝜅𝑎 +
𝛽𝜐

𝜅2𝑎
𝐵𝐽𝜈 𝜅𝑎 =

𝑖𝜔𝜖𝑐𝑙𝑎𝑑
𝛾

𝐶𝐾′
𝜈 𝛾𝑎 −

𝜐𝛽

𝛾2𝑎
𝐷𝐾𝜈 𝛾𝑎

𝑯𝝓 =

−𝑖𝛽

𝜅2
𝑖𝜐

𝑟
𝐵𝐽𝜈 𝜅𝑟 +

𝜔𝜖𝑐𝑜𝑟𝑒
𝛽

𝐴𝜅𝐽′𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 𝑟 < 𝑎

𝑖𝛽

𝛾2
𝑖𝜐

𝑟
𝐷𝐾𝜈 𝛾𝑟 +

𝜔𝜖𝑐𝑙𝑎𝑑
𝛽

𝐶𝛾𝐾′𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 𝑟 > 𝑎
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Now we have an equation systems composed by 4 equations with the 4 coefficients
𝐴, 𝐵, 𝐶 and 𝐷:

𝐴𝐽𝜈 𝜅𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 = 𝐶𝐾𝜈 𝛾𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝐵𝐽𝜈 𝜅𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 = 𝐷𝐾𝜈 𝛾𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝛽𝜐

𝜅2𝑎
𝐴𝐽𝜈 𝜅𝑎 +

𝑖𝜔𝜇

𝜅
𝐵𝐽′𝜈 𝜅𝑎 = −

𝛽𝜐

𝛾2𝑎
𝐶𝐾𝜈 𝛾𝑎 −

𝑖𝜔𝜇

𝛾
𝐷𝐾′𝜈 𝛾𝑎

−𝑖
𝜔𝜖𝑐𝑜𝑟𝑒
𝜅

𝐴𝐽′𝜈 𝜅𝑎 +
𝛽𝜐

𝜅2𝑎
𝐵𝐽𝜈 𝜅𝑎 =

𝑖𝜔𝜖𝑐𝑙𝑎𝑑
𝛾

𝐶𝐾′
𝜈 𝛾𝑎 −

𝜐𝛽

𝛾2𝑎
𝐷𝐾𝜈 𝛾𝑎

The simplest way to simultaneously satisfy all four boundary value equations is to write
the four linear equations in matrix form, and then set the determinant of the matrix
equal to zero.

𝐽𝜈 𝜅𝑎 0 −𝐾𝜈 𝛾𝑎 0

0 𝐽𝜈 𝜅𝑎 0 −𝐾𝜈 𝛾𝑎
𝛽𝜐

𝜅2𝑎
𝐽𝜈 𝜅𝑎

𝑖𝜔𝜇

𝜅
𝐽′𝜈 𝜅𝑎

𝛽𝜐

𝛾2𝑎
𝐾𝜈 𝛾𝑎

𝑖𝜔𝜇

𝛾
𝐾′𝜈 𝛾𝑎

−𝑖
𝜔𝜖𝑐𝑜𝑟𝑒
𝜅

𝐽′𝜈 𝜅𝑎
𝛽𝜐

𝜅2𝑎
𝐽𝜈 𝜅𝑎 −

𝑖𝜔𝜖𝑐𝑙𝑎𝑑
𝛾

𝐾′
𝜈 𝛾𝑎

𝜐𝛽

𝛾2𝑎
𝐾𝜈 𝛾𝑎

𝐴
𝐵
𝐶
𝐷

= 0
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For non-trivial solutions (i.e., non-zero amplitudes), the four equations will simultaneously
equal zero if and only if the determinant of the matrix equals zero.

Expansion of the determinant yields the "characteristic equation" for the step-index
fiber.

𝛽2𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

This formidable equation requires numerical or graphical solution.

There is only one unknown: 𝛽, because 𝜅 and 𝛾 are
functions of 𝛽 and the local index.

𝜅2 = 𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 − 𝛽2

𝛾2 = 𝛽2 − 𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2

Due to the oscillatory nature of 𝐽𝜈 𝜅𝑎 , there can be several values of 𝛽
for a given structure.

Since there are two dimensional degrees of freedom in the cylindrical
waveguide, solutions to the wave equation are labelled with two
indices, 𝑣 and 𝑚. Both numbers are integers.
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The 𝒎 value is called the radial mode number and represents the number of radial
nodes that exist in the field distribution.

𝑬𝒛 𝑟, 𝜙, 𝑧 = ൝
𝐴𝐽𝜈 𝜅𝑟 𝑒𝑖𝝊𝜙𝑒−𝑖𝜷𝒎𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐶𝐾𝜈 𝛾𝑟 𝑒𝑖𝝊𝜙𝑒−𝑖𝜷𝒎𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎

The integer 𝒗 is called the angular mode number and represents the number of
angular nodes that exist in the field distribution.

Once 𝛽 is determined from the characteristic equation, three of the coefficients (𝐴, 𝐵, 𝐶
and 𝐷) can be determined in terms of the fourth by solving the individual equations.

𝛽2𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

From the boundary conditions for continuity of 𝐸𝑧 at 𝑟 = 𝑎

𝐴𝐽𝜈 𝜅𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 = 𝐶𝐾𝜈 𝛾𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝐵𝐽𝜈 𝜅𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 = 𝐷𝐾𝜈 𝛾𝑎 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧

𝐴𝐽𝜈 𝜅𝑎 = 𝐶𝐾𝜈 𝛾𝑎

𝐵𝐽𝜈 𝜅𝑎 = 𝐷𝐾𝜈 𝛾𝑎
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𝐴𝐽𝜈 𝜅𝑎 = 𝐶𝐾𝜈 𝛾𝑎

𝐵𝐽𝜈 𝜅𝑎 = 𝐷𝐾𝜈 𝛾𝑎

where 𝐶 =
𝐽𝜈 𝜅𝑎

𝐾𝜈 𝛾𝑎
𝐴

𝐷 =
𝐽𝜈 𝜅𝑎

𝐾𝜈 𝛾𝑎
𝐵

The coefficients 𝐴 and 𝐵 can be related to one another using the continuity of 𝐸𝜙

𝛽𝜐

𝜅2𝑎
𝐴𝐽𝜈 𝜅𝑎 +

𝑖𝜔𝜇

𝜅
𝐵𝐽′𝜈 𝜅𝑎 = −

𝛽𝜐

𝛾2𝑎
𝐶𝐾𝜈 𝛾𝑎 −

𝑖𝜔𝜇

𝛾
𝐷𝐾′𝜈 𝛾𝑎

By using the expressions above for 𝐶 and 𝐷, the continuity of 𝐸𝜙 becomes:

𝛽𝜐

𝜅2𝑎
𝐴𝐽𝜈 𝜅𝑎 +

𝑖𝜔𝜇

𝜅
𝐵𝐽′𝜈 𝜅𝑎 = −

𝛽𝜐

𝛾2𝑎
𝐾𝜈 𝛾𝑎

𝐽𝜈 𝜅𝑎

𝐾𝜈 𝛾𝑎
𝐴 −

𝑖𝜔𝜇

𝛾

𝐽𝜈 𝜅𝑎

𝐾𝜈 𝛾𝑎
𝐵𝐾′𝜈 𝛾𝑎

which leads to:

𝐴
𝛽𝜐

𝜅2𝑎
𝐽𝜈 𝜅𝑎 +

𝛽𝜐

𝛾2𝑎
𝐽𝜈 𝜅𝑎 = 𝐵 −

𝑖𝜔𝜇

𝜅
𝐽′𝜈 𝜅𝑎 −

𝑖𝜔𝜇

𝛾

𝐽𝜈 𝜅𝑎

𝐾𝜈 𝛾𝑎
𝐾′𝜈 𝛾𝑎
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𝐴
𝛽𝜐

𝜅2𝑎
𝐽𝜈 𝜅𝑎 +

𝛽𝜐

𝛾2𝑎
𝐽𝜈 𝜅𝑎 = 𝐵 −

𝑖𝜔𝜇

𝜅
𝐽′𝜈 𝜅𝑎 −

𝑖𝜔𝜇

𝛾

𝐽𝜈 𝜅𝑎

𝐾𝜈 𝛾𝑎
𝐾′𝜈 𝛾𝑎

This can be arranged as:

𝐵 =

𝑖𝛽𝜐
𝑎𝜔𝜇

1
𝛾2

+
1
𝜅2

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎
𝛾𝐾𝜈 𝛾𝑎

𝐴

Coversely, if we use the continuity of 𝐻𝜙 to relate coefficients 𝐴 and 𝐵 to one another:

−𝑖
𝜔𝜖𝑐𝑜𝑟𝑒
𝜅

𝐴𝐽′𝜈 𝜅𝑎 +
𝛽𝜐

𝜅2𝑎
𝐵𝐽𝜈 𝜅𝑎 =

𝑖𝜔𝜖𝑐𝑙𝑎𝑑
𝛾

𝐶𝐾′
𝜈 𝛾𝑎 −

𝜐𝛽

𝛾2𝑎
𝐷𝐾𝜈 𝛾𝑎

with same steps as before, one has:

𝐵 =

𝑖𝜔𝑎
𝛽𝜐

𝑛𝑐𝑜𝑟𝑒
2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑛𝑐𝑙𝑎𝑑
2 𝐾′𝜈 𝛾𝑎
𝛾𝐾𝜈 𝛾𝑎

1
𝛾2

+
1
𝜅2

𝐴
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𝐵 =

𝑖𝛽𝜐
𝑎𝜔𝜇

1
𝛾2

+
1
𝜅2

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎
𝛾𝐾𝜈 𝛾𝑎

𝐴 𝐵 =

𝑖𝜔𝑎
𝛽𝜐

𝑛𝑐𝑜𝑟𝑒
2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑛𝑐𝑙𝑎𝑑
2 𝐾′𝜈 𝛾𝑎
𝛾𝐾𝜈 𝛾𝑎

1
𝛾2

+
1
𝜅2

𝐴

By the continuity of 𝑬𝝓 By the continuity of 𝑯𝝓

The choice of which equation to use depends on the type of mode carried in the
waveguide.

Note that 𝐵/𝐴 is purely imaginary in both cases, indicating that the two
longitudinal fields are 𝜋/2 out of phase.

The quantity 𝐵/𝐴 is of particular interest in determining the relative size

of the longitudinal components of the 𝐸 and 𝐻 fields.

These, in tum, characterize the type of mode.
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Consider the characteristic equation

For the case where 𝑣 = 0.

𝛽2𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′
𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
= 0

Either term on the left-hand side can be set to zero to satisfy the equation.

The two terms in square bracket appear individually in expressions where
amplitude 𝐴 was related to amplitude 𝐵.

𝐵 =

𝑖𝛽𝜐
𝑎𝜔𝜇

1
𝛾2

+
1
𝜅2

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎
𝛾𝐾𝜈 𝛾𝑎

𝐴
𝐵 =

𝑖𝜔𝑎
𝛽𝜐

𝑛𝑐𝑜𝑟𝑒
2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑛𝑐𝑙𝑎𝑑
2 𝐾′𝜈 𝛾𝑎
𝛾𝐾𝜈 𝛾𝑎

1
𝛾2

+
1
𝜅2

𝐴
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𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′
𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
= 0

𝐵 =

𝑖𝛽𝜐
𝑎𝜔𝜇

1
𝛾2

+
1
𝜅2

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎
𝛾𝐾𝜈 𝛾𝑎

𝐴
𝐵 =

𝑖𝜔𝑎
𝛽𝜐

𝑛𝑐𝑜𝑟𝑒
2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑛𝑐𝑙𝑎𝑑
2 𝐾′𝜈 𝛾𝑎
𝛾𝐾𝜈 𝛾𝑎

1
𝛾2

+
1
𝜅2

𝐴

• If
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+

𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
= 0, then 𝐴 must also be

zero to keep the magnitude of 𝐵 in finite. With
𝐴 = 0, 𝐸𝑧 = 0 and the electric field will be
transverse. Such modes are called TE modes.

• If
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+

𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′
𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
= 0, then the magnitude of 𝐵 will be

zero and the longitudinal component of the 𝐻 field will be zero. Such
modes are called TM modes.

Thus, if 𝑣 = 0, the allowed modes will be either TE or TM.

𝑬𝒛 𝑟, 𝜙, 𝑧 = ൝
𝐴𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐶𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎

𝑯𝒛 𝑟, 𝜙, 𝑧 = ൝
𝐵𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐷𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎
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How TE or TM modes appear?

All multiple reflections at core-cladding interface will lie in one plane and the
electric field will be orthogonal to that plane.

The problem of finding the allowed values of the propagation vector 𝛽
reduces to finding the roots of the characteristic equation:

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′
𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
= 0
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𝑱′𝝂 𝜿𝒂

𝜿𝑱𝝂 𝜿𝒂
+
𝑲′𝝂 𝜸𝒂

𝜸𝑲𝝂 𝜸𝒂
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′
𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
= 0

These equations for the TE and TM modes can be further simplified using the Bessel
function relations.

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
= ±

𝐽𝜈∓1 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
∓

𝜈

𝜅2

𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
= ∓

𝐾𝜈±1 𝜅𝑎

𝛾𝐾𝜈 𝛾𝑎
∓

𝜈

𝛾2

Consider first the TE mode.

−
𝐽1 𝜅𝑎

𝜅𝐽0 𝜅𝑎
−

𝐾1 𝜅𝑎

𝛾𝐾0 𝛾𝑎
= 0

The first term of characteristic equation should be set equal to zero.

Using the first of two Bessel function relations, the eigenvalue equation for TE
modes becomes (𝜐 = 0):
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𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝒌𝒐
𝟐𝒏𝒄𝒐𝒓𝒆

𝟐 𝑱′𝝂 𝜿𝒂

𝜿𝑱𝝂 𝜿𝒂
+
𝒌𝒐
𝟐𝒏𝒄𝒍𝒂𝒅

𝟐 𝑲′
𝝂 𝜸𝒂

𝜸𝑲𝝂 𝜸𝒂
= 0

Consider now the TM mode.

−
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽1 𝜅𝑎

𝜅𝐽0 𝜅𝑎
−
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾1 𝜅𝑎

𝛾𝐾0 𝛾𝑎
= 0

These equations for the TE and TM modes can be further simplified using the Bessel
function relations.

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
= ±

𝐽𝜈∓1 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
∓

𝜈

𝜅2

𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
= ∓

𝐾𝜈±1 𝜅𝑎

𝛾𝐾𝜈 𝛾𝑎
∓

𝜈

𝛾2

The second term of characteristic equation should be set equal to zero.

Using the second of two Bessel function relations, the eigenvalue equation for
TM modes becomes (𝜐 = 0):
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EXERCISES

Let’s consider a step-index circular fiber with a core index 𝑛𝑐𝑜𝑟𝑒 = 1.5, a cladding

index 𝑛𝑐𝑙𝑎𝑑 = 1.45, and with a core radius 𝑎 = 5 𝜇𝑚. The wavelength of the light is

𝜆 = 1.3 𝜇𝑚.

Determine the allowed eigenvalues for the propagation vector 𝛽 of the TE modes.

Exercise 1

Suggestions:

−
𝐽1 𝜅𝑎

𝜅𝐽0 𝜅𝑎
−

𝐾1 𝜅𝑎

𝛾𝐾0 𝛾𝑎
= 0

• Use the characteristic equation for TE modes:

• Use the relation between 𝜅 and 𝛽

𝜅2 = 𝑘𝑜
2𝑛2 − 𝛽2
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When 𝜐 ≠ 0, the characteristic equation is a little more complicated to solve.

The values of 𝛽 will correspond to modes which have finite components of both 𝐸𝑧 e
𝐻𝑧 and are therefore neither TE nor TM modes.

𝛽2𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

These modes are called EH or HE modes, depending on the relative magnitude of the

longitudinal 𝐸 and 𝐻 components

• If A > B  the mode is called an HE mode (𝐸𝑧 dominates 𝐻𝑧)

• If A < B the mode is called an EH mode (𝐻𝑧 dominates 𝐸𝑧)

The EH and HE modes are called "hybrid" modes, because they have

both longitudinal 𝐸 and 𝐻 components in the waveguide.

The EH and HE modes exist only for 𝑣 ≥ 1, so they have azimuthal
structure.
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In the ray picture, these modes are called "skew" rays, because they travel down
the waveguide in a screw-like pattern (Fig. 4.8), glancing off the interface as they
spiral down the axis.

The next subsection develops a useful approximation that simplifies
both the calculation and visualization of the hybrid modes.
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The characteristic equation for the hybrid modes is difficult to solve for 𝛽. 

Fortunately, a very simple and reasonable approximation makes solution
straightforward.

Consider again the characteristic equation:

𝛽2𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

For 𝑣 = 1, 2, …, HE and EH modes are possible. 

Unfortunately, even with powerful software, finding the roots of this equation is
very difficult.

Dramatic simplification occurs if we make the weakly guiding approximation.

For many practical optical fibers, the core and cladding index are nearly identical.

In view of this, it is not unreasonable (at least for the purpose of finding
roots) to approximate that the core and cladding index are identical:

𝑛𝑐𝑜𝑟𝑒 ≈ 𝑛𝑐𝑙𝑎𝑑 = 𝑛
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𝛽2𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

In the weakly guiding approximation, the characteristic equation reduces to:

𝛽2𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

= 𝑘𝑜
2𝑛2

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

2

This can be further simplified noting that if 𝑛𝑐𝑜𝑟𝑒 ≈ 𝑛𝑐𝑙𝑎𝑑,
then 𝛽2 = 𝑘𝑜

2𝑛2, and these terms can be cancelled from
both sides, leading to:

Taking advantage of some Bessel function identities

𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

2

that can be arranged as:

𝜐

𝑎𝛾2
+

𝜐

𝑎𝜅2
=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

𝑘0𝑛𝑐𝑜𝑟𝑒 > 𝛽 > 𝑘0𝑛𝑐𝑙𝑎𝑑
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Taking advantage of some Bessel function identities

𝜐

𝑎𝛾2
+

𝜐

𝑎𝜅2
=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
= ±

𝐽𝜈∓1 𝜅𝑎

𝜅𝑎𝐽𝜈 𝜅𝑎
∓

𝜈

𝑎𝜅2

𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
= ∓

𝐾𝜈±1 𝛾𝑎

𝑎𝛾𝐾𝜈 𝛾𝑎
∓

𝜈

𝑎𝛾2

we have:

𝐽𝜈±1 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
= ∓

𝐾𝜈±1 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

These are the characteristic equations for the EH (top sign) and HE
(bottom sign) modes. Solution will yield the eigenvalues for the
allowed modes.
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𝐽𝜈±1 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
= ∓

𝐾𝜈±1 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

A little more manipulation with Bessel function identities reduces these two equations
into one single equation, with the index 𝑗 identifies the mode:

𝜅
𝐽𝑗−1 𝜅𝑎

𝐽𝑗 𝜅𝑎
= −𝛾

𝐾𝑗−1 𝛾𝑎

𝐾𝑗 𝛾𝑎

𝑗 = 1 TE, TM modes

𝑗 = 𝜈 + 1 EHυ modes

𝑗 = 𝜈 − 1 HEυ modes

Two different modes can have the same eigenvalue, namely they are degenerate.

In the weakly guiding approximation, the TE0m is degenerate with the TM0m, (will
have the same eigenvalue 𝛽) and will propagate at the same velocity (at least to the
accuracy of the weakly guiding approximation).

Similarly, the HEυ+1,m mode and EHυ-1,m are degenerate.

Since degenerate modes travel at the same velocity, it is possible to
define stable superpositions of different modes. Certain combinations of
degenerate modes can be found which are linearly polarized (LP modes).
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Let's start by describing an idealized transverse electric field inside a step-index fiber,
polarized in the ො𝑦-direction

𝐸𝑦 𝑟, 𝜙, 𝑧 = ො𝑦𝐸0𝐽𝜈 𝜅𝑟 cos(𝜐𝜙)𝑒−𝑖𝛽𝑧

where 𝐸0 is the amplitude, and the
functional form is consistent with the fields
we defined in for cylindrical symmetry.

We have assumed that the azimuthal dependence is in the form of a cosine term.

𝑬𝒛 𝑟, 𝜙, 𝑧 = ൝
𝐴𝐽𝜈 𝜅𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 < 𝑎

𝐶𝐾𝜈 𝛾𝑟 𝑒𝑖𝜐𝜙𝑒−𝑖𝛽𝑧 + 𝑐. 𝑐. 𝑟 > 𝑎

If the electric field is travelling in the Ƹ𝑧 -direction and polarized in the ො𝑦 -direction,
then the magnetic field must also be transverse and oriented in the ො𝑥 -direction.

Defining the impedance of the medium as:

𝜂 =
𝜇

𝜖

we can write an expression for 𝐻𝑥 𝑟, 𝜙, 𝑧 in terms of 𝐸𝑦

𝐻𝑥 𝑟, 𝜙, 𝑧 = ො𝑦
𝐸𝑦
𝜂
𝐽𝜈 𝜅𝑟 𝑐𝑜𝑠 𝜐𝜙 𝑒−𝑖𝛽𝑧
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Since we have simply "assumed" a transverse field, it would be valuable to verify that the 
longitudinal component 𝐸𝑧 is negligibly small.

The longitudinal component can be found using Faraday's equation

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡

Since 𝐷 = 𝜖𝐸 and assuming that 𝐸 is a time harmonic field with angular frequency 𝜔:

∇ × 𝐻 = −𝑖𝜔𝜖𝐸

Expanding the curl equation in Cartesian coordinates:

ො𝑥
𝜕𝐻𝑧

𝜕𝑦
−
𝜕𝐻𝑦

𝜕𝑧
− ො𝑦

𝜕𝐻𝑥

𝜕𝑧
−
𝜕𝐻𝑧

𝜕𝑥
+ Ƹ𝑧

𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥

𝜕𝑦
= −𝑖𝜔𝜖 𝐸𝑥 ො𝑥 + 𝐸𝑦 ො𝑦 + 𝐸𝑧 Ƹ𝑧

Since 𝐻 has a component only in the 𝑥 ̂-

direction, then 𝐸𝑧 will be:

𝐸𝑧 𝑟, 𝜙, 𝑧 =
1

𝑖𝜔𝜖

𝜕𝐻𝑥

𝜕𝑦
=

1

𝑖𝜔𝜖

𝜕

𝜕𝑦

𝐸𝑦
𝜂
𝐽𝜈 𝜅𝑟 𝑐𝑜𝑠 𝜐𝜙 𝑒−𝑖𝛽𝑧

𝐻𝑥 𝑟, 𝜙, 𝑧 = ො𝑦
𝐸𝑦

𝜂
𝐽𝜈 𝜅𝑟 𝑐𝑜𝑠 𝜐𝜙 𝑒−𝑖𝛽𝑧
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𝐸𝑧 𝑟, 𝜙, 𝑧 =
1

𝑖𝜔𝜖

𝜕𝐻𝑥

𝜕𝑦
=

1

𝑖𝜔𝜖

𝜕

𝜕𝑦

𝐸𝑦

𝜂
𝐽𝜈 𝜅𝑟 𝑐𝑜𝑠 𝜐𝜙 𝑒−𝑖𝛽𝑧

To evaluate this derivative, the operator
𝜕

𝜕𝑦
must be written in cylindrical coordinates:

ቐ
𝑥 = 𝑟𝑐𝑜𝑠𝜙
𝑦 = 𝑟𝑠𝑒𝑛𝜙
𝑧 = 𝑧

or    

𝑟 = 𝑥2 + 𝑦2

𝜙 = 𝑎𝑟𝑐𝑡𝑔
𝑦

𝑥
𝑧 = 𝑧

The derivative
𝑑

𝑑𝑦
can be written as:

𝑑

𝑑𝑦
=
𝜕𝑟

𝜕𝑦

𝜕

𝜕𝑟
+
𝜕𝜙

𝜕𝑦

𝜕

𝜕𝜙

Let us calculate the two partial derivative separately:

𝜕𝑟

𝜕𝑦
=

𝜕

𝜕𝑦
𝑥2 + 𝑦2 =

1

2 𝑥2 + 𝑦2
2𝑦 =

2𝑟𝑠𝑒𝑛𝜙

2𝑟
= 𝑠𝑒𝑛𝜙

𝜕𝜙

𝜕𝑦
=

𝜕

𝜕𝑦
𝑎𝑟𝑐𝑡𝑔

𝑦

𝑥
=

1

1 +
𝑦2

𝑥2

∙
1

𝑥
=

𝑥2

𝑥𝑟2
=
𝑟𝑐𝑜𝑠𝜙

𝑟2
=
𝑐𝑜𝑠𝜙

𝑟
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𝑑

𝑑𝑦
=
𝜕𝑟

𝜕𝑦

𝜕

𝜕𝑟
+
𝜕𝜙

𝜕𝑦

𝜕

𝜕𝜙

𝜕𝑟

𝜕𝑦
= 𝑠𝑒𝑛𝜙

𝜕𝜙

𝜕𝑦
=
𝑐𝑜𝑠𝜙

𝑟

The derivative
𝑑

𝑑𝑦
becomes:

𝑑

𝑑𝑦
= 𝑠𝑒𝑛𝜙

𝜕

𝜕𝑟
+
𝑐𝑜𝑠𝜙

𝑟

𝜕

𝜕𝜙

Applying the derivative operator to 𝐸𝑧 𝑟, 𝜙, 𝑧 =
1

𝑖𝜔𝜖

𝜕

𝜕𝑦

𝐸𝑦

𝜂
𝐽𝜈 𝜅𝑟 cos(𝜐𝜙)𝑒−𝑖𝛽𝑧 :

𝐸𝑧 𝑟, 𝜙, 𝑧 =
𝐸𝑦
𝑖𝜂𝜔𝜖

𝑠𝑒𝑛𝜙𝜅𝐽′𝜈 𝜅𝑟 cos 𝜐𝜙 −
𝜐𝑐𝑜𝑠𝜙

𝑟
𝐽𝜈 𝜅𝑟 sen 𝜐𝜙 𝑒−𝑖𝛽𝑧

This can be simplified with two Bessel function identities:

𝐽′𝜈 𝜅𝑟 =
1

2
𝐽𝜐−1 𝜅𝑟 − 𝐽𝜐+1 𝜅𝑟

𝜐

𝜅𝑟
𝐽𝜈 𝜅𝑟 =

1

2
𝐽𝜐−1 𝜅𝑟 + 𝐽𝜐+1 𝜅𝑟
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leading to:

𝐸𝑧 𝑟, 𝜙, 𝑧

=
𝐸𝑦
𝑖𝜂𝜔𝜖

ቂ

ቃ

cos 𝜐𝜙 𝑠𝑒𝑛𝜙
𝜅

2
𝐽𝜐−1 𝜅𝑟 − cos 𝜐𝜙 𝑠𝑒𝑛𝜙

𝜅

2
𝐽𝜐+1 𝜅𝑟

−
𝜅

2
𝐽𝜐−1 𝜅𝑟 𝑐𝑜𝑠𝜙sen 𝜐𝜙 −

𝜅

2
𝐽𝜐+1 𝜅𝑟 𝑐𝑜𝑠𝜙sen 𝜐𝜙 𝑒−𝑖𝛽𝑧

Collecting terms proportional to 𝐽𝜐−1 𝜅𝑟 and 𝐽𝜐+1 𝜅𝑟 , separately:

𝐸𝑧 𝑟, 𝜙, 𝑧

=
𝐸𝑦

𝑖𝜂𝜔𝜖

𝜅

2
ሼ

ሽ

𝐽𝜐−1 𝜅𝑟 𝑠𝑒𝑛𝜙 cos 𝜐𝜙 − sen 𝜐𝜙 𝑐𝑜𝑠𝜙

− 𝐽𝜐+1 𝜅𝑟 𝑠𝑒𝑛𝜙 cos 𝜐𝜙 + sen 𝜐𝜙 𝑐𝑜𝑠𝜙 𝑒−𝑖𝛽𝑧

Let’s use the well-known trigonometric identity:

𝑠𝑒𝑛𝛼𝑐𝑜𝑠𝛽 =
1

2
𝑠𝑒𝑛 𝛼 + 𝛽 + 𝑠𝑒𝑛 𝛼 − 𝛽

for both terms in square bracket.
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𝐸𝑧 𝑟, 𝜙, 𝑧 =
𝐸𝑦
𝑖𝜂𝜔𝜖

𝜅

2
𝐽𝜐−1 𝜅𝑟 𝑠𝑒𝑛𝜙 cos 𝜐𝜙 − sen 𝜐𝜙 𝑐𝑜𝑠𝜙 − 𝐽𝜐+1 𝜅𝑟 𝑠𝑒𝑛𝜙 cos 𝜐𝜙 + sen 𝜐𝜙 𝑐𝑜𝑠𝜙 𝑒−𝑖𝛽𝑧

𝑠𝑒𝑛𝛼𝑐𝑜𝑠𝛽 =
1

2
𝑠𝑒𝑛 𝛼 + 𝛽 + 𝑠𝑒𝑛 𝛼 − 𝛽

𝑠𝑒𝑛𝜙cos 𝜐𝜙 − sen 𝜐𝜙 𝑐𝑜𝑠𝜙 =
1

2
𝑠𝑒𝑛 𝜙 + 𝜐𝜙 + 𝑠𝑒𝑛 𝜙 − 𝜐𝜙 − 𝑠𝑒𝑛 𝜐𝜙 + 𝜙 − 𝑠𝑒𝑛 𝜐𝜙 − 𝜙

= 𝑠𝑒𝑛 𝜐𝜙 − 𝜙

𝑠𝑒𝑛𝜙cos 𝜐𝜙 + sen 𝜐𝜙 𝑐𝑜𝑠𝜙 =
1

2
𝑠𝑒𝑛 𝜙 + 𝜐𝜙 + 𝑠𝑒𝑛 𝜙 − 𝜐𝜙 + 𝑠𝑒𝑛 𝜐𝜙 + 𝜙 + 𝑠𝑒𝑛 𝜐𝜙 − 𝜙

= 𝑠𝑒𝑛 𝜐𝜙 + 𝜙

Substituting these into equation above, and cancelling terms yields:

𝐸𝑧 𝑟, 𝜙, 𝑧

=
𝐸𝑦
𝑖𝜂𝜔𝜖

𝜅

2
𝐽𝜐−1 𝜅𝑟 𝑠𝑒𝑛 𝜐 − 1 𝜙 − 𝐽𝜐+1 𝜅𝑟 𝑠𝑒𝑛 𝜐 + 1 𝜙 𝑒−𝑖𝛽𝑧
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𝐸𝑧 𝑟, 𝜙, 𝑧 =
𝐸𝑦

𝑖𝜂𝜔𝜖

𝜅

2
𝐽𝜐−1 𝜅𝑟 𝑠𝑒𝑛 𝜐 − 1 𝜙 − 𝐽𝜐+1 𝜅𝑟 𝑠𝑒𝑛 𝜐 + 1 𝜙 𝑒−𝑖𝛽𝑧

Recall the general modal solution for the longitudinal field is described as

𝐸𝑧 𝑟, 𝜙, 𝑧 = 𝐴𝐽𝜈 𝜅𝑟 𝑐𝑜𝑠 𝜐𝜙 𝑒−𝑖𝛽𝑧

We can see by inspection that 𝐸𝑧 is, in fact, a superposition of two modes, one with

index 𝜐 + 1 nd the other with index 𝜐 − 1.

Recall that in the weakly guiding approximation, the HEυ+1,m is degenerate with the EHυ-1,m.

This shows that it is possible to add two modes in such a way that the residual
longitudinal component of the field is essentially zero.

The coefficient 𝐴 describing the amplitude term can be expressed as:

𝐴 = 𝐸𝑦
𝜅

2𝜂𝜔𝜖
= 𝐸𝑦

𝜅

2𝑘0𝑛

Since the transverse wave vector 𝜅 is much smaller than the wavevector 𝑘0
there is little amplitude in the longitudinal field.

Thus, our initial assumption of a perfectly transverse field (no
longitudinal components) is nearly satisfied through proper
superposition of degenerate hybrid modes.
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From the example, we can see how two modes can be combined to create a linearly-
polarized, cartesian-coordinate referenced, electric field distribution.

These superposition modes are called the LPυm modes.

The designation and construction of an LP mode is as follows::

LP1m → sum of TE0m, TM0m and HE2m modes

LPυm → sum of HEυ+1,m e EHυ-1,m modes

LP0m → HE1m mode only

Figure shows a sketch of the mode
structure of an LP11 mode, and a
sketch of the two modes that are
combined to form it.

The mode profiles of the HE21 and TE01 modes are best described in
cylindrical coordinates, one having purely azimuthal fields, and the
other having radial fields.

However, the superposition leads to a mode with two lobes that is 
linearly polarized. 
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The plot shows ො𝑦 -direction, , but the mode could also be polarized along the ො𝑥 -axis.

Also, the lobes could be rotated by 90°, making the null region lie along the 𝑥 = 0.

Thus, there are four degenerate LP11 modes (two orientations of the lobes, each with
two possible polarizations).

The LP modes have many practical advantages.

First, the LP modes provide an easy way to visualize the structure of the
guided modes. Because most of the energy is stored in the transverse field
of the LP mode, we can ignore the complications of energy stored in the
longitudinal terms.
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Finally, LP modes allow for a simplified characteristic equation that can be solved
with straightforward numeric or graphical techniques.

Second, the LP modes represent actual energy distributions that a polarized source
would excite in a fiber. For example, a polarized laser uniformly illuminating the end
of a step would create a linearly polarized transverse field on the input.

The disadvantages of LP modes are due to the fact that they are not true
modes but are in fact a superposition of slightly nondegenerate modes.

The individual EH, HE, TM, and TE modes travel at slightly different
velocities, so the polarization state of the initial superposition will change
as the modes propagate down the axis of the guide.

The LP modes are, in summary, only an approximation of the
true mode structure of the fiber.
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Often, we are concerned whether a given mode will propagate within a fiber.

For example, we might need a single mode fiber for an experiment using a visible laser,
such as the HeNe laser operating at 𝜆 = 633 𝑛𝑚, but all we can find is single mode fiber
that is designed for operation at 1.3 𝜇𝑚.

How can we determine if this fiber will be satisfactory?

To answer this, we need to develop what are known as "cut-off" conditions, which
determine under what circumstances a mode will propagate in a fiber.

Let us consider the characteristic equation in its general form:

𝛽2𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

we can clearly see that the characteristic equation contains a term with 

the ratio of Bessel functions  
𝐽𝜐±1
𝐽𝜈

𝐽′𝜈 𝜅𝑟 =
1

2
𝐽𝜐−1 𝜅𝑟 − 𝐽𝜐+1 𝜅𝑟

Considering also the Bessel identity:
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𝛽2𝜐2

𝑎2
1

𝛾2
+

1

𝜅2

2

=
𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎
∙
𝑘𝑜
2𝑛𝑐𝑜𝑟𝑒

2 𝐽′𝜈 𝜅𝑎

𝜅𝐽𝜈 𝜅𝑎
+
𝑘𝑜
2𝑛𝑐𝑙𝑎𝑑

2 𝐾′𝜈 𝛾𝑎

𝛾𝐾𝜈 𝛾𝑎

𝐽′𝜈 𝜅𝑟 =
1

2
𝐽𝜐−1 𝜅𝑟 − 𝐽𝜐+1 𝜅𝑟

This term explodes to infinity at each root of 𝐽𝜐, as the student will demonstrate in the
homework.

To ensure that there is at least one solution to the equation (i.e.,
one place where the lines cross), the argument 𝜅𝑟 must extend
beyond the first root.

A representative trend is reported in the following picture:

1° root 2° root

3° root

𝐽1 𝜅𝑎

𝜅𝐽0 𝜅𝑎
= −

𝐾1 𝜅𝑎

𝛾𝐾0 𝛾𝑎
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1° root 2° root

3° root

𝐽1 𝜅𝑎

𝜅𝐽0 𝜅𝑎
= −

𝐾1 𝜅𝑎

𝛾𝐾0 𝛾𝑎

Each time 𝜅𝑎 increases beyond another root of
𝐽𝜐±1
𝐽𝜈

, another mode will be allowed.

The roots of the Bessel functions are thus the signposts for establishing mode cutoff
conditions.

We can generalize the cutoff conditions for the modes in terms of the roots of the
appropriate Bessel function.

For example, referring back to Picture, it is clear that no TE mode will exist if
𝜅𝑎 < 2.405 (that is the first root of 𝐽0(𝜅𝑎)).

The TE01 can only exist if 𝜅𝑎 < 2.405 , so we say that the cut-off
condition for the TE01 mode is 𝜅𝑎 = 2.405 .
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The cutoff condition for the TE02 mode occurs at the second root of the Bessel function,
𝐽0(𝜅𝑎) which occurs 5.405.

The cutoff conditions for every variety of mode can be found in a similar fashion.

These cutoff conditions are

TE0m modes → 𝜅𝑎 > 𝑚𝑡ℎ root of 𝐽0 𝜅𝑎

HE1m modes → 𝜅𝑎 > 𝑚𝑡ℎ root of 𝐽1 𝜅𝑎

EHυm modes → 𝜅𝑎 > 𝑚𝑡ℎ root of 𝐽𝜐 𝜅𝑎 with the added constraint

that the first root is not 0

HEυm modes →
𝜖𝑐𝑜𝑟𝑒

𝜖𝑐𝑙𝑎𝑑
+ 1 𝐽𝜐−1 𝜅𝑎 =

𝜅𝑎

𝜐−1
𝐽𝜐 𝜅𝑎

Thus, the modes allowed in a circular waveguides can be easily found by
plotting the Bessel functions 𝐽𝑣 𝜅𝑟 as a function of 𝜅𝑎.
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𝐽0

𝐽1
𝐽2

Figure shows a plot of the first three Bessel functions, with notations on the cutoff
points for a few modes.

For example, if 𝜅𝑎 is greater than 2.405, then the TE01, TM01, and HE21 modes
will be allowed. This is in addition to the HE11 mode, which is always allowed.

The HE11 mode is a special case which will be described in the next 
chapter.
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The HEvm modes have a complicated cutoff formula which requires knowledge of the
refractive indices of the core and cladding.

Figure shows the cut-off condition for the HE2m modes.

𝜖𝑐𝑜𝑟𝑒
𝜖𝑐𝑙𝑎𝑑

+ 1 𝐽𝜐−1 𝜅𝑎 =
𝜅𝑎

𝜐 − 1
𝐽𝜐 𝜅𝑎

In most cases the ratio can be approximated as unity and the cutoff condition

becomes 2𝐽𝜐−1 𝜅𝑎 =
𝜅𝑎

𝜐 − 1
𝐽𝜐 𝜅𝑎

Being 𝜐 = 2 for HE2m modes, the cutoff condition is 2𝐽1 𝜅𝑎 = 𝜅𝑎𝐽2 𝜅𝑎 .

When 𝜅𝑎 > 2.405 , together

with HE11, TE01 and TM01

modes, also HE21 is allowed.
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The parameter used to characterize a waveguide is the Normalized Frequency or the V-
number.

For a cylindrical fiber, the V-number is defined as

𝑉 − 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑎𝑘𝑚𝑎𝑥 = 𝑎𝑘0 𝑛𝑐𝑜𝑟𝑒
2 − 𝑛𝑐𝑙𝑎𝑑

2 =
2𝜋𝑎

𝜆
𝑛𝑐𝑜𝑟𝑒
2 − 𝑛𝑐𝑙𝑎𝑑

2

where 𝑎 is the core radius. 

The normalized frequency provides a quick way to determine the number of modes in a
waveguide and is often used as a specification for optical fibers and devices.

The cutoff conditions can all be evaluated once the V-number of a fiber is given.

The 𝑉-number is useful for determining cutoff conditions, as well as the total number of
allowed modes.

The V -number is often specified in the purchase of optical single mode fiber.

For example, the cut-off condition for a single mode fiber occurs when the V -
number reaches 2.405 (the first root of the 𝐽0 Bessel function).

The term "cut-off' refers to the point where the TE01, TM01, and HE21

modes cease to propagate if 𝑉 becomes smaller.

The wavelength at which a single-mode fiber suddenly becomes
multimode is called the "cutoff' wavelength 𝜆𝑐
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For large core diameter fibers with many modes, it is possible to provide an approximate
formula describing the total number of modes that will propagate.

Recall the characteristic equation for the LP modes

𝜅
𝐽𝑗−1 𝜅𝑎

𝐽𝑗 𝜅𝑎
= −𝛾

𝐾𝑗−1 𝛾𝑎

𝐾𝑗 𝛾𝑎

For values of 𝜅𝑎 far from cutoff, the term 𝛾𝑎 will be large, and the asymptotic
value of the 𝐾𝑗 functions can be used.

𝐾𝑗 𝛾𝑎 →
𝑒−𝛾𝑎

2𝜋 𝛾𝑎

Thus, the ratio
𝐾𝑗−1 𝛾𝑎

𝐾𝑗 𝛾𝑎
→ 1 and the characteristic equation reduces to:

𝐽𝑗−1 𝜅𝑎

𝐽𝑗 𝜅𝑎
= −

𝛾

𝜅
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𝐽𝑗−1 𝜅𝑎

𝐽𝑗 𝜅𝑎
= −

𝛾

𝜅

For a given value of 𝑣, the number of allowed modes will be proportional to the
number of roots of 𝐽𝑗 𝜅𝑎 between 0 and 𝜅𝑎 = 𝑉.

In the approximation that 𝜅𝑎 is large, the asymptotic expansion of 𝐽𝑗 𝜅𝑎 can be used

𝐽𝑗 𝜅𝑎 ≈
2

𝜋𝜅𝑎
𝑐𝑜𝑠 𝜅𝑎 −

𝜈𝜋

2
−
𝜋

4

There will be one root every time the ratio goes to infinity i.e., each time the
argument increases by 𝜋.

For a given value of 𝑣, the number of roots will be approximately

𝑚 =
𝜅𝑎 −

𝜈𝜋
2 −

𝜋
4

𝜋
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𝑚 =
𝜅𝑎 −

𝜈𝜋
2 −

𝜋
4

𝜋

Solving this in terms of the normalized frequency, 𝑉 = 𝜅𝑚𝑎𝑥𝑎, and ignoring the
𝜋

4
term

𝑉 = 2𝑚 + 𝜐
𝜋

2

This equation, while only an approximation, shows the general relationship between
the azimuthal number 𝑣, and the number of radial nodes in the mode 𝑚.

As 𝑣 increases, indicating more angular lobes, the maximum value of 𝑚 must
decrease, implying that the radial structure becomes smoother.

Since there is an allowed mode for each value of 𝑚 and 𝑣 , we can
graphically plot the number of modes.

The largest possible value for 𝑚 is 𝑉/ 𝜋, when 𝜐 = 0. 

Likewise, the maximum value for 𝑣 is 2𝑉/ 𝜋.

These allowed values are plotted in the following Figure.
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Each dot represents an allowed combination of 𝑚 and 𝑣.

The total number of allowed modes is
geometrically determined from the
area of the triangle in the Figure:

𝑚𝑚𝑎𝑥𝜐𝑚𝑎𝑥

2
=
𝑉2

𝜋2

We must recall that for each mode, there are two angular orientations (cosine or
sine solution), and two possible polarizations ( ො𝑥 or ො𝑦 in the LP mode
approximation).

The number of modes is increased by a factor of four.

So, the number of allowed modes in a fiber waveguide is given by the 
approximation :

𝑁 =
4𝑉2

𝜋2

𝑚𝑚𝑎𝑥 =
𝑉

𝜋

𝑣𝑚𝑎𝑥 =
2𝑉

𝜋


