
CHAPTER 2

WIDTHS AND PROFILES OF SPECTRAL PROFILES
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• Spectral lines in discrete absorption or emission spectra are never strictly monochromatic.

The spectral region

within the halfwidth is

called the kernel of the

line, the regions outside

are the line wings.

• Even with the very high resolution of interferometers, one observes a spectral

distribution 𝐼(𝜐) of the absorbed or emitted intensity around the central frequency

𝜔0 =
𝐸𝑏−𝐸𝑎

ℏ
corresponding to a molecular transition with the energy difference Δ𝐸 =

𝐸𝑏 − 𝐸𝑎 between upper and lower levels.

• The function 𝐼(𝜔) in the vicinity of 𝜔0 is called the line profile.

• The frequency interval 𝛿𝜔 = 𝜔2 −𝜔1 between the two frequencies 𝜔2 and 𝜔1 for

which 𝐼 𝜔1 = 𝐼 𝜔2 = 𝐼(𝜔0)/2 is the Full-Width Half-Maximum (FWHM) of the line,

often shortened to the linewidth.

kernel

code

𝛿𝜔

𝜔1 𝜔2𝜔0 𝜔
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2.1.1 Lorentzian line profile of emitted radiation

• The spectral line profile of a radiative transition can be determined with a classical

model.

The amplitude 𝑥(𝑡) of the oscillation can be obtained by solving the differential 
equation of motion:

ሷ𝑥 𝑡 + 𝛾 ሶ𝑥 𝑡 + 𝜔0
2𝑥 𝑡 = 0

with 𝜔0
2 =

𝑘

𝑚

• Let’s consider to irradiate a sample of molecules with monochromatic radiation

resonant with the transition 𝐸𝑎 → 𝐸𝑏.

• Let’s consider the spontaneous emission of transition 𝐸𝑏 → 𝐸𝑎. We shall describe the

excited atomic electron by the classical model of a damped harmonic oscillator with

frequency 𝜔, mass 𝑚 and restoring force constant 𝑘.

• The radiative energy loss results in a damping of the oscillation described by the

damping constant 𝛾.

• We shall see, however, that for real atoms the damping is extremely small, which

means that 𝛾 ≪ 𝜔.
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The real solution of with the initial values 𝑥 0 = 𝑥0 and ሶ𝑥 0 = 0, is:

𝑥 𝑡 = 𝑥0𝑒
−
𝛾
2𝑡 𝑐𝑜𝑠 𝜔𝑡 +

𝛾

2𝜔
𝑠𝑒𝑛 𝜔𝑡

The frequency 𝜔 = 𝜔0
2 −

𝛾2

4
of the damped oscillation is slightly lower than the

frequency 𝜔0 of the undamped case.

𝑥 𝑡 = 𝑥0𝑒
−
𝛾
2𝑡𝑐𝑜𝑠 𝜔0𝑡

The frequency 𝜔0 = 2𝜋𝜐0 of the oscillator corresponds to the central

frequency 𝜔𝑎𝑏 =
𝐸𝑏−𝐸𝑎

ℏ
of an atomic transition 𝐸𝑏 → 𝐸𝑎.

However, for small damping, we can set 𝜔 ≃ 𝜔0 nd also may neglect the second term

in 𝑥 𝑡 . With this approximation, which is still very accurate for real atoms, we obtain

the solution as

2.1.1 Lorentzian line profile of emitted radiation
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Because the amplitude 𝑥 𝑡 f the oscillation decreases gradually, the frequency of the

emitted radiation is no longer monochromatic as it would be for an oscillation with

constant amplitude. Instead, it shows a frequency distribution related to the function 𝑥 𝑡

x(t) by a Fourier transformation.

The damped oscillation 𝑥 𝑡 can be described as a superposition of

monochromatic oscillations 𝑒𝑖𝜔𝑡 with slightly different frequencies 𝜔 and

amplitudes 𝐴 𝜔 :

𝑥 𝑡 =
1

2 2𝜋
න
0

∞

𝐴 𝜔 𝑒𝑖𝜔𝑡𝑑𝜔

2.1.1 Lorentzian line profile of emitted radiation
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𝑥 𝑡 = 𝑥0𝑒
−
𝛾
2
𝑡𝑐𝑜𝑠 𝜔0𝑡
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The amplitudes 𝐴 𝜔 are calculated as the Fourier transform:

𝐴 𝜔 =
1

2𝜋
න
−∞

∞

𝑥 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡 =
1

2𝜋
න
0

∞

𝑥0𝑒
−
𝛾
2
𝑡𝑐𝑜𝑠 𝜔0𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡

The lower integration limit is taken to be zero because 𝑥 𝑡 = 0 ∀𝑡 > 0.

𝐴 𝜔 =
𝑥0

8𝜋

1

𝑖 𝜔 − 𝜔0 +
𝛾
2

+
1

𝑖 𝜔 + 𝜔0 +
𝛾
2

The real intensity 𝐼(𝜔) will be:

𝐼 𝜔 ∝ 𝐴 𝜔 𝐴∗ 𝜔

and contains terms with 𝜔 − 𝜔0 and 𝜔 + 𝜔0 at the denominator

The integral can readily be integrated to give the complex amplitudes:

2.1.1 Lorentzian line profile of emitted radiation
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𝑥 𝑡 = 𝑥0𝑒
−
𝛾
2
𝑡𝑐𝑜𝑠 𝜔0𝑡

𝑥 𝑡 =
1

2 2𝜋
න
0

∞

𝐴 𝜔 𝑒𝑖𝜔𝑡𝑑𝜔
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In the vicinity of the central frequency 𝜔0 of an 
atomic transition where 𝜔 − 𝜔0

2 ≪ 𝜔0
2 the 

terms with 𝜔 + 𝜔0 can be neglected. 

𝐼 𝜔 − 𝜔0 =
𝐶

𝜔 − 𝜔0
2 +

𝛾
2

2

Thus, the intensity profile of the spectral line becomes:

2.1.1 Lorentzian line profile of emitted radiation
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𝐴 𝜔 =
𝑥0

8𝜋

1

𝑖 𝜔 − 𝜔0 +
𝛾
2

+
1

𝑖 𝜔 + 𝜔0 +
𝛾
2
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The constant 𝐶 can be defined in two different ways:

න
0

∞

𝐿 𝜔 − 𝜔0 𝑑𝜔 = න
−∞

∞

𝐿 𝜔 − 𝜔0 𝑑 𝜔 − 𝜔0 = 1

Including the expression 𝐼 𝜔 − 𝜔0 one obtains: 

න
−∞

∞

𝐿 𝜔 − 𝜔0 𝑑 𝜔 − 𝜔0 = න
−∞

∞ 𝐼 𝜔 − 𝜔0

𝐼0
𝑑 𝜔 − 𝜔0

=
1

𝐼0
න
−∞

∞ 𝐶

𝜔 − 𝜔0
2 +

𝛾
2

2 𝑑 𝜔 − 𝜔0 =
𝐶

𝐼0

2𝜋

𝛾
= 1

from which:

𝐶 =
𝐼0𝛾

2𝜋

න
−∞

∞ 1

1 + 𝑥2
𝑑𝑥 = 𝑎𝑟𝑐𝑡𝑔𝑥

a) For comparison of different line profiles, it is useful to define a normalized 

intensity profile 𝐿 𝜔 − 𝜔0 = 𝐼 𝜔 − 𝜔0 /𝐼0 with 𝐼0 =  𝐼 𝜔 𝑑𝜔 such that:

2.1.1 Lorentzian line profile of emitted radiation
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𝐼 𝜔 − 𝜔0 =
𝐶

𝜔 − 𝜔0
2 +

𝛾
2

2
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So in definitive:

𝐿 𝜔 − 𝜔0 =
1

2𝜋

𝛾

𝜔 − 𝜔0
2 +

𝛾
2

2

We calculate the FWHM. The maximum of the normalized intensity profile at 𝜔 = 𝜔0 is:

𝐿𝑀𝐴𝑋 =
1

2𝜋

𝛾

𝛾
2

2 =
2

𝜋𝛾

The value of 𝜔𝐹 − 𝜔0 with respect to which 𝐿 is reduced by 𝐿𝑀𝐴𝑋 /2 will be: 

𝐿𝑀𝐴𝑋
2

=
1

𝜋𝛾
=

1

2𝜋

𝛾

𝜔𝐹 − 𝜔0
2 +

𝛾
2

2

is called the normalized Lorentzian profile.

2.1.1 Lorentzian line profile of emitted radiation
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𝐼 𝜔 − 𝜔0 =
𝐶

𝜔 − 𝜔0
2 +

𝛾
2

2

𝐶 =
𝐼0𝛾

2𝜋

𝐿 𝜔 − 𝜔0 =
𝐼 𝜔 − 𝜔0

𝐼0
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from which:

𝜔𝐹 −𝜔0
2 +

𝛾

2

2

=
𝛾2

2

𝜔𝐹 − 𝜔0 =
𝛾

2

and so:

The FWHM value will be:

2 𝜔𝐹 − 𝜔0 = 𝛿𝜔 = 𝛾 or 𝛿𝜈 =
𝛾

2𝜋

Any intensity distribution with a Lorentzian profile is then:

𝐼 𝜔 − 𝜔0 =
𝐼0
2𝜋

𝛾

𝜔 − 𝜔0
2 +

𝛾
2

2

with a peak intensity 𝐼 𝜔0 =
2𝐼0

𝜋𝛾
and 𝐼0 =  𝐼 𝜔 𝑑𝜔

2.1.1 Lorentzian line profile of emitted radiation
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𝐿𝑀𝐴𝑋
2

=
1

𝜋𝛾
=

1

2𝜋

𝛾

𝜔𝐹 −𝜔0
2 +

𝛾
2

2
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b) the normalization is chosen in such a way that 𝐼 𝜔0 = 𝐼0; furthermore, the full 

halfwidth is denoted by 2Γ. In this notation the line profile:

𝐿∗ 𝜔 − 𝜔0 =
𝐼 𝜔 − 𝜔0

𝐼0
=
𝐼 𝜔 − 𝜔0

𝐼 𝜔0

Since:

𝐼 𝜔0 =
𝐶

𝛾
2

2

𝐿∗ 𝜔 − 𝜔0 =
𝐼 𝜔 − 𝜔0

𝐶
𝛾
2

2

=
𝐶

𝜔 − 𝜔0
2 +

𝛾
2

2 ∙

𝛾
2

2

𝐶
=

Γ2

𝜔 − 𝜔0
2 + Γ2

then:

with Γ =
𝛾

2

𝐼 𝜔 − 𝜔0 =
𝐶

𝜔 − 𝜔0
2 +

𝛾
2

2

2.1.1 Lorentzian line profile of emitted radiation
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Assuming 𝑥 =
𝜔−𝜔0

Γ
, 𝐿∗ 𝜔 − 𝜔0 can be abbreviated as:

𝐿∗ 𝜔 − 𝜔0 =
1

1 + 𝑥2

with 𝐿∗ 𝜔0 = 1

In this notation the area under the line profile becomes:

න
0

∞

𝐼 𝜔 𝑑𝜔 = Γන
−∞

∞

)𝐼(𝑥 𝑑𝑥 = 𝐼0Γπ

2.1.1 Lorentzian line profile of emitted radiation
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𝐿∗ 𝜔 − 𝜔0 =
Γ2

𝜔 − 𝜔0
2 + Γ2
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2.1.2 Relation Between Linewidth and Lifetime

The radiant power of the damped oscillator can be obtained from if both sides of the

equation ሶ𝑥(𝑡) are multiplied by 𝑚 ሶ𝑥(𝑡):

𝑚 ሷ𝑥 𝑡 ሶ𝑥 𝑡 + 𝑚𝜔0
2𝑥 𝑡 ሶ𝑥 𝑡 = −𝛾𝑚 ሶ𝑥 𝑡 2

Recalling that the kinetic energy for an oscillator is equal to 𝑚 ሶ𝑥 𝑡 2/2 and its potential

energy is equal a 𝑚𝜔0
2𝑥2/2, then the expression can be rewritten as:

𝑑

𝑑𝑡

𝑚

2
ሶ𝑥 𝑡 2 +

𝑚

2
𝜔0
2𝑥2 =

𝑑𝑊

𝑑𝑡
= −𝛾𝑚 ሶ𝑥 𝑡 2

Includgin the expression derived for 𝑥 𝑡 = 𝑥0𝑒
−
𝛾

2
𝑡𝑐𝑜𝑠 𝜔0𝑡 and neglecting the

terms proportional to 𝛾2:

𝑑𝑊

𝑑𝑡
= −𝛾𝑚𝑥0

2𝜔0
2𝑒−𝛾𝑡𝑠𝑒𝑛2 𝜔0𝑡

ሷ𝑥 𝑡 + 𝛾 ሶ𝑥 𝑡 + 𝜔0
2𝑥 𝑡 = 0

2.1 NATURAL LINEWIDTH
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Because the time average: 𝑠𝑒𝑛2 𝜔0𝑡 =
1

2
the time-

averaged radiant power:

𝑑𝑊

𝑑𝑡
= −

𝛾

2
𝑚𝑥0

2𝜔0
2𝑒−𝛾𝑡

Equation shows that
𝑑𝑊

𝑑𝑡
decreases to Τ1 𝑒 of its initial value after the decay time 𝜏 = Τ1 𝛾.

Previously we saw that the mean lifetime 𝜏𝑖 of a molecular level 𝐸𝑖 which decays
exponentially by spontaneous emission, is related to the Einstein coefficient 𝐴𝑖 by
the relation 𝜏𝑖 = 1/𝐴𝑖.

𝐿 𝜔 − 𝜔0 =
1

2𝜋

𝐴𝑖

𝜔 − 𝜔0
2 +

𝐴𝑖
2

2

𝑑𝑊

𝑑𝑡
= −𝛾𝑚𝑥0

2𝜔0
2𝑒−𝛾𝑡𝑠𝑒𝑛2 𝜔0𝑡

2.1.2 Relation Between Linewidth and Lifetime
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𝐿 𝜔 − 𝜔0 =
1

2𝜋

𝛾

𝜔 − 𝜔0
2 +

𝛾
2

2

Replacing the classical damping constant 𝛾
by the spontaneous transition probability 𝐴𝑖,
we can use the classical formula
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as a correct description of the frequency distribution of spontaneous emission and its

linewidth. The natural halfwidth of a spectral line spontaneously emitted from the level

𝐸𝑖 is

𝛿𝜔 = 𝐴𝑖 or 𝛿𝜈 =
𝐴𝑖

2𝜋

The radiant power emitted from 𝑁𝑖 excited atoms on a transition 𝐸𝑖 → 𝐸𝑘 is given by:

𝑑𝑊𝑖𝑘

𝑑𝑡
= 𝑁𝑖𝐴𝑖𝑘ℏ𝜔𝑖𝑘

If the emission of a source with volume Δ𝑉 is isotropic, the radiation power received 

by a detector of area 𝐴 at a distance 𝑟 through the solid angle 𝑑Ω = 𝐴/𝑟2 is:

𝑃𝑖𝑘 =
𝑑𝑊𝑖𝑘

𝑑𝑡

𝑑Ω

4𝜋
= 𝑁𝑖𝐴𝑖𝑘ℏ𝜔𝑖𝑘Δ𝑉

𝐴

4𝜋𝑟2

This means that the density 𝑁𝑖 of emitters can be inferred from the 

measured power, if 𝐴𝑖𝑘 is known.

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH
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𝛿𝜔 = 𝛾
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In a similar way, the spectral profile of an absorption line can be derived for atoms at rest.

The intensity 𝐼 of a plane wave passing in the 𝑧-direction through an absorbing sample

decreases along the distance 𝑑𝑧 :

𝑑𝐼 = −𝛼𝐼𝑑𝑧

The absorption coefficient 𝛼𝑖𝑘 [𝑐𝑚
−1] for a transition | ۧ𝑖 → | ۧ𝑘 depends on population

densities 𝑁𝑖 and 𝑁𝑘 of the lower and upper level, respectively, and on the optical

absorption cross section 𝜎𝑖𝑘 [𝑐𝑚
2] of each absorbing atom:

𝛼𝑖𝑘 𝜔 = 𝜎𝑖𝑘 𝜔 𝑁𝑖 −
𝑔𝑖
𝑔𝑘

𝑁𝑘

which reduces to 𝛼𝑖𝑘 𝜔 = 𝜎𝑖𝑘𝑁𝑖 when 𝑁𝑘 ≪ 𝑁𝑖. For sufficiently small
intensities 𝐼, the induced absorption rate is small compared to the refilling
rate of level | ۧ𝑖 and the population density 𝑁𝑖 does not depend on the
intensity 𝐼.

𝑑𝑃𝑖𝑘 𝜔 𝑑𝜔 = 𝑃0 𝜔 𝑁𝑖 −
𝑔𝑖
𝑔𝑘

𝑁𝑘 𝜎𝑖𝑘𝐴𝑑𝑥𝑑𝜔

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH
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Integration of the equation then yields Lambert-Beer’s law

𝐼 = 𝐼0𝑒
−𝛼 𝜔 𝑧

The absorption profile 𝛼 𝜔 can be obtained from our classical model of a damped

oscillator with charge 𝑞 under the influence of a driving force 𝑞𝐸 caused by the incident

wave with amplitude 𝐸 = 𝐸0𝑒
𝑖𝜔𝑡. The corresponding differential equation in 1D:

𝑚 ሷ𝑥 𝑡 + 𝑏 ሶ𝑥 𝑡 + 𝑘𝑥 𝑡 = 𝑞𝐸0𝑒
𝑖𝜔𝑡

has the solution:

𝑥 𝑡 =
𝑞𝐸0𝑒

𝑖𝜔𝑡

)𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔

with 𝛾 = 𝑏/𝑚 and 𝜔0
2 = 𝑘/𝑚.

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH
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𝑑𝐼 = −𝛼𝐼𝑑𝑧
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The forced oscillation of the charge 𝑞 generates an induced dipole moment:

𝑝 𝑡 = 𝑞𝑥 𝑡 =
𝑞2𝐸0𝑒

𝑖𝜔𝑡

)𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔

In a sample with 𝑁 oscillators per unit volume, the macroscopic polarization 𝑃, which is

the sum of all dipole moments per unit volume, is therefore:

)𝑃 = 𝑁𝑞𝑥(𝑡

On the other hand, the polarization can be derived in classical electrodynamics

from Maxwell’s equations using the dielectric constant 휀0, i.e.:

𝑷 = 휀0 휀 − 1 𝑬

and using Maxwell's equations it is possible to derive the relationship 

between refractive index 𝑛 and relative dielectric constant 휀:

𝑣 =
1

휀휀0𝜇𝜇0
=
𝑐

𝑛

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH
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Since 𝑐 =
1

𝜀0𝜇0
, then 𝑛 = 휀𝜇

Except for ferromagnetic materials, the relative permeability is 𝜇 ≃ 1, leading to:

𝑛 = 휀

We combine the latest expressions found:

𝑃

𝐸
=
𝑁𝑞𝑥(𝑡)

𝐸
=

𝑁𝑞2

)𝑚(𝜔0
2 −𝜔2 + 𝑖𝛾𝜔

𝑃

𝐸
= 휀0 휀 − 1 = 휀0 𝑛2 − 1

Harmonic oscillator

Maxwell's equation

and get:

𝑛2 = 1 +
𝑁𝑞2

)휀0𝑚(𝜔0
2 −𝜔2 + 𝑖𝛾𝜔

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH
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In gaseous media at sufficiently low pressures, the index of refraction is close to unity (for

example, in air at atmospheric pressure, 𝑛 = 1.00028 for 𝜆 = 500 nm). In this case, the

approximation:

)𝑛2 − 1 = (𝑛 + 1)(𝑛 − 1) ≃ 2(𝑛 − 1

leads to:

𝑛 = 1 +
𝑁𝑞2

)2휀0𝑚(𝜔0
2 −𝜔2 + 𝑖𝛾𝜔

In order to make clear the physical implication of this complex index of

refraction, we separate the real and the imaginary parts and write:

It is therefore necessary to separate the real part and the imaginary part of 

the expression found of the refractive index:

𝑛 = 𝑛′ − 𝑖𝜅

𝑛2 = 1 +
𝑁𝑞2

)휀0𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH

WIDTHS AND 
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We multiply and divide by the complex conjugate of the denominator:

𝑛 = 1 +
𝑁𝑞2

2휀0𝑚

1

𝜔0
2 −𝜔2 + 𝑖𝛾𝜔

𝜔0
2 −𝜔2 − 𝑖𝛾𝜔

𝜔0
2 −𝜔2 − 𝑖𝛾𝜔

= 1 +
𝑁𝑞2

2휀0𝑚

𝜔0
2 − 𝜔2

𝜔0
2 −𝜔2 2 + 𝛾2𝜔2

− 𝑖
𝛾𝜔

𝜔0
2 − 𝜔2 2 + 𝛾2𝜔2

And so:

𝑛′ = 1 +
𝑁𝑞2

2휀0𝑚

𝜔0
2 − 𝜔2

𝜔0
2 − 𝜔2

2
+ 𝛾2𝜔2

𝑘 =
𝑁𝑞2

2휀0𝑚

𝛾𝜔

𝜔0
2 − 𝜔2

2
+ 𝛾2𝜔2

These equations are known as Kramers–Kronig dispersion relations.

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH
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𝑁𝑞2

)2휀0𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔
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An EM wave 𝐸 = 𝐸0𝑒
𝑖(𝜔𝑡−𝑘𝑧) passing in the 𝑧-direction through a medium with the

refractive index 𝑛 has the same frequency 𝜔 as in vacuum, but a different wave vector

𝑘 = 𝑘0𝑛 . Inserting |𝑘| = 2𝜋/𝜆 and 𝑛 = 𝑛′ − 𝑖𝜅 yields

𝐸 = 𝐸0𝑒
)𝑖(𝜔𝑡−𝑛𝑘0𝑧 = 𝐸0𝑒

൯𝑖(𝜔𝑡−𝑛′𝑘0𝑧+𝑖𝑘0𝜅𝑧

= 𝐸0𝑒
−𝑘0𝜅𝑧𝑒 ൯𝑖(𝜔𝑡−𝑛′𝑘0𝑧 = 𝐸0𝑒

−
2𝜋𝜅𝑧
𝜆 𝑒 ൯𝑖𝑘0(𝑐𝑡−𝑛

′𝑧

Equation (3.33) shows that the imaginary part 𝜅(𝜔) of the complex refractive
index 𝑛 describes the absorption of the EM wave.

At a penetration depth of Δ𝑧 =
𝜆

2𝜋𝜅
, the amplitude 𝐸0𝑒

−
2𝜋𝜅𝑧
𝜆 has decreased to

1/𝑒 of its initial value.

The real part 𝑛′(𝜔) represents the dispersion of the EM wave, i.e., the
dependence of the phase velocity 𝑣 𝜔 = 𝑐/𝑛′(𝜔) on the frequency.

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH
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|𝑘| = 2𝜋/𝜆
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The intensity of the wave will then be equal to:

𝐼 = 𝐸𝐸∗ = 𝐼0𝑒
−2𝑘0𝜅𝑧

Comparing it with the Lambert-Beer law, we get:

𝛼 = 2𝑘0𝜅 =
4𝜋𝜅

𝜆0
The absorption coefficient 𝛼 is proportional to the imaginary part 𝜅 of the refractive
index. Using the Kramers-Kronig relations, one obtains (𝑞 = 𝑒)

𝛼 =
4𝜋𝑁𝑒2

2𝜆0휀0𝑚

𝛾𝜔

𝜔0
2 − 𝜔2 2 + 𝛾2𝜔2

Since: 𝜆0 =
2𝜋𝑐

𝜔0

𝛼 =
𝑁𝑒2𝜔0

𝑐휀0𝑚

𝛾𝜔

𝜔0
2 − 𝜔2 2 + 𝛾2𝜔2

𝐸 = 𝐸0𝑒
−
2𝜋𝜅𝑧
𝜆 𝑒 ൯𝑖𝑘0(𝑐𝑡−𝑛

′𝑧

𝑘0 =
2𝜋

𝜆

𝐼 = 𝐼0𝑒
−𝛼 𝜔 𝑧

𝑘 =
𝑁𝑞2

2휀0𝑚

𝛾𝜔

𝜔0
2 − 𝜔2 2 + 𝛾2𝜔2

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH

WIDTHS AND 

PROFILES OF 

SPECTRAL 

PROFILES
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In the neighborhood of a molecular transition frequency 𝜔0, where 𝜔0 − 𝜔 ≪

𝜔0, the dispersion relations reduce:

𝛼 =
𝑁𝑒2𝜔0

𝑐휀0𝑚

𝛾𝜔

𝜔0
2 −𝜔2 2 + 𝛾2𝜔2

=
𝑁𝑒2𝜔0

𝑐휀0𝑚

𝛾𝜔

𝜔0 − 𝜔 𝜔0 + 𝜔 2 + 𝛾2𝜔2

≈
𝑁𝑒2𝜔0

4𝑐휀0𝑚

𝛾𝜔0

𝜔0
2 𝜔0 − 𝜔 2 +

𝛾
2

2
𝜔0
2
=

𝑁𝑒2

4휀0𝑚𝑐

𝛾

𝜔0 − 𝜔 2 +
𝛾
2

2

The same for the real part 𝑛′ :

𝑛′ = 1 +
𝑁𝑞2

2휀0𝑚

𝜔0
2 − 𝜔2

𝜔0
2 −𝜔2 2 + 𝛾2𝜔2

= 1 +
𝑁𝑞2

2휀0𝑚

𝜔0 −𝜔 𝜔0 +𝜔

𝜔0 − 𝜔 𝜔0 +𝜔 2 + 𝛾2𝜔2

≈ 1 +
𝑁𝑞2

2휀0𝑚

𝜔0 −𝜔 𝜔0

𝜔0 − 𝜔 𝜔0
2 + 𝛾2𝜔0

2 = 1 +
𝑁𝑞2

2휀0𝑚𝜔0

𝜔0 − 𝜔

𝜔0 − 𝜔 2 + 𝛾2

~𝜔0
~𝜔0

2

~2𝜔0

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH
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Finally, the Kramers-Kronig dispersion relations become:

𝛼 =
𝑁𝑒2

4휀0𝑚𝑐

𝛾
2

𝜔0 − 𝜔 2 +
𝛾
2

2

𝑛′ = 1 +
𝑁𝑒2

4휀0𝑚𝜔0

𝜔0 −𝜔

𝜔0 −𝜔 2 +
𝛾
2

2

The spectral absorption profile 𝜶(𝝎) is Lorentzian with a FWHM equal

to 𝜟𝝎 = 𝜸, which equals the natural linewidth.

2.1.2 Relation Between Linewidth and Lifetime
2.1 NATURAL LINEWIDTH
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• Generally, the Lorentzian line profile with the natural linewidth cannot be observed

without special techniques, because it is completely concealed by other broadening

effects.

𝜔𝑒 = 𝜔0 + 𝒌 ∙ 𝒗

for an observer looking toward the emitting molecule (that is, against the
direction of the wave vector 𝒌 of the emitted radiation.

Consider an excited molecule with a velocity 𝒗 = 𝑣𝑥, 𝑣𝑦,𝑣𝑧 relative to the rest

frame of the observer. The central frequency of a molecular emission line that is 𝜔0

in the coordinate system of the molecule is Doppler shifted to:

• One of the major contributions to the spectral linewidth in gases at low pressures is the

Doppler width, which is due to the thermal motion of the absorbing or emitting

molecules.

WIDTHS AND 
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• For the observer, the apparent emission frequency 𝜔𝑒 is increased if the molecule
moves toward the observer (𝒌 ∙ 𝒗 > 0) and decreased if the molecule moves away
(𝒌 ∙ 𝒗 < 0).

𝜔′ = 𝜔 − 𝒌 ∙ 𝒗

The molecule can only absorb if 𝜔′coincides with its eigenfrequency 𝜔0. The

absorption frequency 𝜔 = 𝜔𝑎 will be:

𝜔𝑎 = 𝜔0 + 𝒌 ∙ 𝒗

• Similarly, one can see that the absorption frequency 𝜔0 of a molecule moving with the

velocity 𝒗 across a plane EM wave 𝑬 = 𝑬𝟎𝑒
𝑖𝜔𝑡−𝒌∙𝒓 is shifted.

The wave frequency 𝜔 in the rest frame appears in the frame of the moving molecule as:

THE SAME GOES FOR A MOLECULE THAT ABSORBS RADIATION

𝜔𝑒 = 𝜔0 + 𝒌 ∙ 𝒗

2.2 DOPPLER WIDTH
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As in the emission case, the absorption frequency 𝜔𝑎 is
increased for 𝒌 ∙ 𝒗 > 0. This happens, for example, if the
molecule moves parallel to the wave propagation.
It is decreased if 𝒌 ∙ 𝒗 < 0, e.g., when the molecule moves
against the light propagation..

If we choose the 𝑧 −direction to coincide with the light propagation, with 𝒌 =

0,0, 𝑘𝑧 and 𝑘 =
𝜔0

𝑐
, then 𝜔𝑎 = 𝜔0 + 𝒌 ∙ 𝒗 becomes:

𝜔𝑎 = 𝜔0 1 +
𝑣𝑧
𝑐

At thermal equilibrium, the molecules of a gas follow a Maxwellian velocity

distribution. At the temperature 𝑇, the number of molecules 𝑛𝑖 𝑧 𝑑𝑣𝑧 per

unit volume than in the energy level 𝐸𝑖 have a velocity component between

𝑣𝑧 and 𝑣𝑧 + 𝑑𝑣𝑧 is:

𝜔𝑎 = 𝜔0 + 𝒌 ∙ 𝒗

2.2 DOPPLER WIDTH
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𝑛𝑖 𝑧 𝑑𝑣𝑧 =
𝑁𝑖

𝑣𝑝 𝜋
𝑒
−

𝑣𝑧
𝑣𝑝

2

𝑑𝑣𝑧

where 𝑁𝑖 = 𝑛𝑖 𝑧 𝑑𝑣𝑧 s the density of all molecules in level 𝐸𝑖, 𝑣𝑝 =
2𝐾𝑇

𝑚
is the most

probable velocity, 𝑚 is the mass of the molecule and 𝐾 is Boltzmann's constant.

Using the relationship 𝜔𝑎 = 𝜔0 1 +
𝑣𝑧

𝑐
, the differential 𝑑𝑣𝑧 can be expressed as

𝑑𝑣𝑧 =
𝑐

𝜔0
𝑑𝜔.

𝑛𝑖 𝜔 𝑑𝜔 = 𝑁𝑖
𝑐

𝜔0𝑣𝑝 𝜋
𝑒
−

)𝑐(𝜔−𝜔0
𝜔0𝑣𝑝

2

𝑑𝜔

Substituting in the above expression, we obtain the number of molecules

with absorption frequencies shifted from 𝜔0 into the interval [𝜔, 𝜔 + 𝑑𝜔]:

2.2 DOPPLER WIDTH
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Since the emitted or absorbed radiant power 𝑃 𝜔 𝑑𝜔

is proportional to density 𝑛𝑖 𝜔 𝑑𝜔 f molecules

emitting or absorbing in the interval 𝑑𝜔, the intensity

profile of a Doppler-broadened spectral line becomes:

𝐼 𝜔 = 𝐼0𝑒
−

)𝑐(𝜔−𝜔0
𝜔0𝑣𝑝

2

This is a Gaussian profile. Calculate the FWHM. Being 𝐼0 the maximum power value at

𝜔 = 𝜔0, the frequency 𝜔∗ at which corresponds an intensity equal to 𝐼0/2 is:

𝐼0
2
= 𝐼0𝑒

−
)𝑐(𝜔∗−𝜔0

𝜔0𝑣𝑝

2

After a few mathematical steps you get:

𝜔∗ = 𝜔0 +
𝜔0𝑣𝑝
𝑐

𝑙𝑛2

2.2 DOPPLER WIDTH
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𝑛𝑖 𝜔 𝑑𝜔 = 𝑁𝑖
𝑐

𝜔0𝑣𝑝 𝜋
𝑒
−

)𝑐(𝜔−𝜔0
𝜔0𝑣𝑝

2

𝑑𝜔
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Then the FWHM of the profile will be:

𝛿𝜔𝐷 = 2 𝑙𝑛2
𝜔0𝑣𝑝
𝑐

Since for a Maxwell distribution, the most probable velocity 𝑣𝑝 is given by:

𝑣𝑝 =
2𝐾𝑇

𝑚

the FWHM of the profile becomes:

𝛿𝜔𝐷 =
𝜔0

𝑐

8𝐾𝑇𝑙𝑛2

𝑚

known as Doppler width.

The Doppler width is much larger than the natural linewidth .

2.2 DOPPLER WIDTH
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More detailed consideration shows that a Doppler-broadened spectral line cannot be

strictly represented by a pure Gaussian profile as has been assumed in the foregoing

discussion, since not all molecules with a definite velocity component 𝑣𝑧 emit or absorb

radiation at the same frequency 𝜔𝑎 = 𝜔′ 1 +
𝑣𝑧

𝑐
.

𝐿 𝜔 − 𝜔′ =
1

2𝜋

𝛾

𝜔 − 𝜔′ 2 +
𝛾
2

2

with a central frequency 𝜔′. 

Because of the finite lifetimes of the molecular energy levels, the frequency response of

these molecules is represented by a Lorentzian profile:

2.2 DOPPLER WIDTH
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Let 𝑛 𝜔′ 𝑑𝜔′ = 𝑛 𝑣𝑧 𝑑𝑣𝑧 be the number of molecules per unit volume with velocity
components within the interval [𝑣𝑧, 𝑣𝑧 + 𝑑𝑣𝑧].
The spectral intensity distribution 𝐼(𝜔) of the total absorption or emission of all molecules
at the transition 𝐸𝑖 → 𝐸𝑘 is then:

𝐼 𝜔 = 𝐼0න𝑛 𝜔′ 𝐿 𝜔 − 𝜔′ 𝑑𝜔′

Substituting expressions for 𝑛 𝜔′ 𝑑𝜔′and 𝐿 𝜔 − 𝜔′ , 

we obtain:

𝐼 𝜔 = 𝐶න
0

∞ 𝑒
−

)𝑐(𝜔−𝜔0
𝜔0𝑣𝑝

2

𝜔 − 𝜔′ 2 +
𝛾
2

2

with:

𝐶 =
𝛾𝑁𝑖𝑐

2𝑣𝑝𝜋
Τ3 2𝜔0

2.2 DOPPLER WIDTH
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𝐿 𝜔 − 𝜔′ =
1

2𝜋

𝛾

𝜔 − 𝜔′ 2 +
𝛾
2

2

𝑛𝑖 𝜔 𝑑𝜔 = 𝑁𝑖
𝑐

𝜔0𝑣𝑝 𝜋
𝑒
−

)𝑐(𝜔−𝜔0
𝜔0𝑣𝑝

2

𝑑𝜔
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This intensity profile, which is a convolution of Lorentzian and Gaussian profiles, is called a

Voigt profile. Voigt profiles play an important role in the spectroscopy of stellar

atmospheres, where accurate measurements of line wings allow the contributions of

Doppler broadening and natural linewidth or collisional line broadening to be separated.

From such measurements the temperature and pressure of the emitting or absorbing layers

in the stellar atmospheres may be deduced.

𝐼 𝜔 = 𝐶න
0

∞ 𝑒
−

)𝑐(𝜔−𝜔0
𝜔0𝑣𝑝

2

𝜔 − 𝜔′ 2 +
𝛾
2

2

2.2 DOPPLER WIDTH
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When an atom A with energy levels 𝐸𝑖 and 𝐸𝑘 approaches another atom or molecule B,

the energy levels of A are shifted because of the interaction between A and B.

This shift depends on the electron configurations of A and B and on the distance 𝑅(𝐴, 𝐵),

between both collision partners, which we define as the distance between the centers of

mass of A and B.

The energy shifts ∆𝐸 are, in general, different for the levels 𝐸𝑖 and 𝐸𝑘 and may be

positive as well as negative. The energy shift ∆𝐸 is positive if the interaction between A

and B is repulsive, and negative if it is attractive.

When plotting the energy 𝐸(𝑅) for the two energy levels 𝐸𝑖 and 𝐸𝑘 as a function of the

interatomic distance 𝑅, you then get the typical trend in the following Figure.
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This mutual interaction of both partners at distances 𝑅 < 𝑅𝐶 is called a collision
and radius 𝑅𝐶 is the collision radius.

If no internal energy of the collision partners is transferred during the
collision by nonradiative transitions, the collision is termed elastic.

Without additional stabilizing mechanisms (recombination), the

partners will separate again after the collision time 𝜏𝑐 ≃
𝑅𝑐

𝑣
which

depends on the relative velocity 𝑣.

2.3 COLLISIONAL BROADENING
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2.3.1 Phenomenological description

If atom A undergoes a radiative transition between levels 𝐸𝑖 and 𝐸𝑘 during the collision

time, the frequency :

𝜔𝑖𝑘 =
𝐸𝑖 𝑅 − 𝐸𝑘 𝑅

ℏ

of absorbed or emitted radiation depends on the distance 𝑅(𝑡) at the time of the

transition.

In a gas mixture of atoms A and B, the mutual distance 𝑅(𝐴, 𝐵) shows
random fluctuations with a distribution around a mean value 𝑹 that
depends on pressure and temperature.

• We assume that the radiative transition takes place in a time interval that is short

compared to the collision time, so that the distance 𝑅 does not change during the

transition. In the previous Figure, this assumption leads to vertical radiative

transitions.

The fluorescence yields a corresponding frequency distribution
around a most probable value 𝜔𝑖𝑘(𝑅𝑚) which may be shifted against
the frequency 𝜔0 of the unperturbed atom A.

2.3 COLLISIONAL BROADENING
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The shift ∆𝜔 = 𝜔0 − 𝜔𝑖𝑘 depends on how differently the two energy levels 𝐸𝑖 and 𝐸𝑘 are
shifted at a distance𝑅𝑚(𝐴, 𝐵) where the emission probability has a maximum.

𝐼(𝜔) ∝ න𝐴𝑖𝑘(𝑅)𝑃𝑐𝑜𝑙(𝑅) 𝐸𝑖 𝑅 − 𝐸𝑘 𝑅 𝑑𝑅

where 𝐴𝑖𝑘(𝑅) is the spontaneous transition probability, which depends on 𝑅
because the electronic wave functions of the collision pair (AB) depend on 𝑅,
and 𝑃𝑐𝑜𝑙(𝑅) is the probability per unit time that the distance between A and B
lies in the range from 𝑅 to 𝑅 + 𝑑𝑅.

It follows that the intensity profile of the collision-broadened line reflects
the difference of the potential curves:

𝐸𝑖 𝑅 − 𝐸𝑘 𝑅 = 𝑉 𝐴 𝐸𝑖 , 𝐵 − 𝑉 𝐴 𝐸𝑘 , 𝐵

The intensity profile 𝐼(𝜔) of the collision-broadened and shifted emission line can be
obtained from:

2.3.1 Phenomenological description
2.3 COLLISIONAL BROADENING
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• Let 𝑉(𝑅) be the interaction potential between the ground-state atom A and its collision

partner B.

where 𝑁0 is the average density of atoms B.

𝑁 𝑅 𝑑𝑅 = 𝑁04𝜋𝑅
2𝑒−

)𝑉(𝑅
𝐾𝑇 𝑑𝑅

𝐼 𝜔 𝑑𝜔 ∝ 𝑅2𝑒−
)𝑉(𝑅

𝐾𝑇 𝑑𝜔

Because the intensity of an absorption line is proportional to the density of

absorbing atoms while they are forming collision pairs, the intensity profile of

the absorption line can be written as:

• The probability that B has a distance between 𝑅 e 𝑅 + 𝑑𝑅 will be proportional to

4𝜋𝑅2𝑑𝑅 and at thermal equilibrium to the Boltzmann factor 𝑒−
𝑉(𝑅)

𝐾𝑇 .

• The number 𝑁(𝑅) f collision partners B with distance 𝑅 from A is therefore:

2.3.1 Phenomenological description
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We rewrite the differential 𝑑𝜔 from:

ℏ𝜔𝑖𝑘(𝑅) = 𝐸𝑖 𝑅 − 𝐸𝑘 𝑅 = 𝑉𝑖 𝑅 − 𝑉𝑘 𝑅

Differentiating from 𝑅 :

ℏ
𝑑𝜔𝑖𝑘

𝑑𝑅
𝑑𝑅 =

𝑑 𝑉𝑖 𝑅 − 𝑉𝑘 𝑅

𝑑𝑅
𝑑𝑅

Typically, several models of spherical potential are substituted for 𝑉(𝑅), such as

the Lennard-Jones potential:

𝑉 𝑅 =
𝑎

𝑅12
−

𝑏

𝑅6

The coefficients 𝑎 and 𝑏 are adjusted for optimum agreement between 
theory and experiment.

𝐼 𝜔 𝑑𝜔 ∝ 𝑅2𝑒−
)𝑉(𝑅

𝐾𝑇
𝑑

𝑑𝑅
𝑉𝑖 𝑅 − 𝑉𝑘 𝑅 𝑑𝑅

from which substituting in the previous relation: 𝐼 𝜔 𝑑𝜔 ∝ 𝑅2𝑒−
)𝑉(𝑅

𝐾𝑇 𝑑𝜔
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2.3.2 Inelastic collisions

Besides elastic collisions, inelastic collisions may also occur in which the excitation energy

𝐸𝑖 of atom A is either partly or completely transferred into internal energy of the collision

partner B, or into translational energy of both partners.

𝐴𝑖 = 𝐴𝑖
𝑟𝑎𝑑 + 𝐴𝑖

𝑐𝑜𝑙𝑙

with

𝐴𝑖
𝑐𝑜𝑙𝑙 = 𝑁𝐵𝜎𝐵 ҧ𝑣

The total transition probability 𝐴𝑖 for the depopulation of level 𝐸𝑖 is a sum of radiative

and collision-induced probabilities:

Such inelastic collisions are often called quenching collisions because they decrease the

number of excited atoms in level 𝐸𝑖 and therefore quench the fluorescence intensity.

as seen in CHAPTER 1
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Inserting the relations at the thermal equilibrium:

ҧ𝑣 =
8𝐾𝑇

𝜋𝜇

with 𝜇 =
𝑀𝐴𝑀𝐵

𝑀𝐴+𝑀𝐵
and 𝑝𝐵 = 𝑁𝐵𝐾𝑇

between the mean relative velocity 𝑣, the pressure 𝑝𝐵 and the gas temperature T, we have

that the total transition probability becomes:

𝐴𝑖 =
1

𝜏𝑠𝑝
+ 𝑎𝑝𝐵

con 𝑎 = 2𝜎𝐵
2

𝜋𝜇𝐾𝑇

It is evident that the transition probability is pressure-dependent.

In the paragraph 2.1.2 Relation Between Linewidth and Lifetime we have
shown that the natural linewidth 𝛿𝜔𝑛 coincides with the transition
probability 𝐴𝑖.
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𝐴𝑖 = 𝐴𝑖
𝑟𝑎𝑑 + 𝐴𝑖

𝑐𝑜𝑙𝑙

𝐴𝑖
𝑐𝑜𝑙𝑙 = 𝑁𝐵𝜎𝐵 ҧ𝑣



It follows that this pressure-dependent transition probability causes a corresponding

pressure-dependent linewidth 𝛿𝜔, which can be described by a sum of two damping terms:

𝛿𝜔 = 𝛿𝜔𝑛 + 𝛿𝜔𝑐𝑜𝑙𝑙 = 𝛾𝑛 + 𝛾𝑐𝑜𝑙𝑙 = 𝛾𝑛 + 𝑎𝑝𝐵

The collision-induced additional line broadening 𝑎𝑝𝐵 is therefore often called

pressure broadening.

𝐼 𝜔 − 𝜔0 =
𝐶

𝜔 − 𝜔0
2 +

𝛾𝑛 + 𝛾𝑐𝑜𝑙𝑙
2

2

Considering the expression of the line profile previously obtained, it follows that the

inelastic collisions contribute to broad the line profile with a FWHM 𝛾 = 𝛾𝑛 + 𝛾𝑐𝑜𝑙𝑙:

2.3 COLLISIONAL BROADENING
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𝐴𝑖 =
1

𝜏𝑠𝑝
+ 𝑎𝑝𝐵

𝐼 𝜔 − 𝜔0 =
𝐶

𝜔 − 𝜔0
2 +

𝛾
2

2



The discussion showed how both elastic and inelastic collisions cause a spectral

broadening of the line profile.

𝐼 𝜔 − 𝜔0 =
𝐼0
2𝜋

𝛾
2
+ 𝑁𝐵𝜎𝐵 ҧ𝑣

𝜔 − 𝜔0 −𝑁𝐵𝜎𝑠 ҧ𝑣 2 +
𝛾
2
+ 𝑁𝐵𝜎𝐵 ҧ𝑣

2

where the shift 𝑁𝐵𝜎𝑠 ҧ𝑣 and the broadening

𝑁𝐵𝜎𝐵 ҧ𝑣of the line profile are determined by

the number density 𝑁𝐵 of collisional partner B

and by the collision cross sections 𝜎𝑠 for the

line shift, and 𝜎𝐵 for broadening

Elastic collisions also cause a peak shift that depends on potential curves 𝐸𝑖 𝑅 and

𝐸𝑘 𝑅 .

Ultimately, we can write the line profile as:

This Lorentzian profile that takes into account the phenomena of collision

must be used for the convolution with the Gaussian profile due to

Doppler broadening to derive the Voigt profile of the absorption line.
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2.3 SATURATION AND POWER 
BROADENING

At sufficiently large laser intensities, the optical pumping rate on an absorbing

transition becomes larger than the relaxation rates.

The effect of optical pumping on the saturation of population densities is illustrated by

a two-level system with population densities 𝑁1 and 𝑁2.

The two levels are coupled to each other by absorption or emission and by relaxation

processes, but have no transitions to other levels.

This results in a noticeable decrease of the population in the absorbing levels. This

saturation of the population densities also causes additional line broadening.
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With the probability 𝑃 = ℬ12𝜌(𝜔) for a transition | ۧ1 → | ۧ2 by absorption of photons ℏ𝜔

and the relaxation probability 𝑅𝑖 for level | ۧ𝑖 , the rate equation for the level population is:

𝑑𝑁1
𝑑𝑡

= −
𝑑𝑁2
𝑑𝑡

= −𝑃𝑁1 − 𝑅1𝑁1 + 𝑃𝑁2 + 𝑅2𝑁2

where we have assumed nondegenerate levels with statistical weight factors 𝑔1 = 𝑔2 = 1. 

𝑃 + 𝑅1 𝑁1 = 𝑃 + 𝑅2 𝑁 − 𝑁1

𝑃 + 𝑅2 𝑁2 = 𝑃 + 𝑅1 𝑁 − 𝑁2

leading to:

𝑁1 = 𝑁
𝑃 + 𝑅2

2𝑃 + 𝑅1 + 𝑅2
𝑁2 = 𝑁

𝑃 + 𝑅1
2𝑃 + 𝑅1 + 𝑅2

Under stationary conditions
𝑑𝑁𝑖

𝑑𝑡
= 0, we obtain with 𝑁1 + 𝑁2 = 𝑁:
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When the pump rate 𝑃 becomes much larger

than the relaxation rates 𝑅𝑖 (𝑃 ≫ 𝑅1, 𝑅2),

the population 𝑁1 = 𝑁2 ≈
𝑁

2
and so 𝑁1 = 𝑁2.

𝑁10 = 𝑁
𝑅2

𝑅1 + 𝑅2
𝑁20 = 𝑁

𝑅1
𝑅1 + 𝑅2

With the abbreviations

∆𝑁 = 𝑁1 − 𝑁2 = 𝑁
𝑅2 − 𝑅1

2𝑃 + 𝑅1 + 𝑅2

∆𝑁0 = 𝑁10 − 𝑁20 = 𝑁
𝑅2 − 𝑅1
𝑅1 + 𝑅2

Without a radiation field (𝑃 = 0), the population densities at thermal equilibrium

according are (using previous expressions):

This means that the absorption coefficient 𝛼 = 𝜎 𝑁1 − 𝑁2 = 0.

The medium becomes completely transparent..

𝑁1 = 𝑁
𝑃 + 𝑅2

2𝑃 + 𝑅1 + 𝑅2
𝑁2 = 𝑁

𝑃 + 𝑅1
2𝑃 + 𝑅1 + 𝑅2

2.3 SATURATION AND POWER 
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Dividing both members of ∆𝑁 with 𝑅1 + 𝑅2 we obtain:

∆𝑁 =
∆𝑁0

1 +
2𝑃

𝑅1 + 𝑅2
We introduce the saturation parameter:

𝑆 =
2𝑃

𝑅1 + 𝑅2
=
𝑃

𝑅
=

)𝐵12𝜌(𝜔

𝑅

where 𝑅 =
𝑅1+𝑅2

2
is the average relaxation rate.

∆𝑁 =
∆𝑁0
1 + 𝑆

∆𝑁 = 𝑁1 − 𝑁2 = 𝑁
𝑅2 − 𝑅1

2𝑃 + 𝑅1 + 𝑅2

∆𝑁0 = 𝑁10 − 𝑁20 = 𝑁
𝑅2 − 𝑅1
𝑅1 + 𝑅2

Then the saturation parameter is the ratio between pumping rate and the average
relaxation rate of the two levels.

and the saturated absorption coefficient 𝛼 𝜔 = 𝜎12∆𝑁 becomes:

𝛼 =
𝛼0

1 + 𝑆

where 𝛼0 is the unsaturated absorption coefficient without pumping.

Then, ∆𝑁 can be rewritten as:
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The power absorbed per unit volume on the transition | ۧ1 → | ۧ2 by atoms with the

population densities 𝑁1and 𝑁2 in a radiation field with a broad spectral profile and

spectral energy density 𝜌(𝜔) will be:

𝑑𝑊12

𝑑𝑡
= ℏ𝜔𝐵12𝜌(𝜔)∆𝑁

Replacing ∆𝑁 =
∆𝑁0

1+𝑆
, you get:

𝑑𝑊12

𝑑𝑡
= ℏ𝜔𝐵12𝜌(𝜔)

∆𝑁0
1 + 𝑆

With 𝑆 =
𝐵12𝜌(𝜔)

𝑅
, from which 𝐵12𝜌 𝜔 = 𝑆𝑅, you get:

𝑑𝑊12

𝑑𝑡
= ℏ𝜔𝑅

∆𝑁0

1 +
1
𝑆
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Since the absorption profile 𝛼 𝜔 of a homogeneously broadened line is Lorentzian, the

induced absorption probability of a monochromatic wave with frequency 𝜔 follows a

Lorentzian line profile 𝐵12𝜌(𝜔)𝐿(𝜔 − 𝜔0).

𝑆𝜔 =
)𝐵12𝜌(𝜔

𝑅
𝐿(𝜔 − 𝜔0)

We can assume that the mean relaxation rate 𝑅 is independent of 𝜔 within the

frequency range of the line profile. With the definition of the Lorentzian profile

𝐿(𝜔 − 𝜔0), we obtain for the spectral saturation parameter 𝑆𝜔:

𝑆𝜔 = 𝑆0

𝛾
2

2

𝜔 − 𝜔0
2 +

𝛾
2

2

with 𝑆0 = 𝑆𝜔(𝜔0)

We can therefore introduce a frequency-dependent spectral saturation parameter 𝑆𝜔 for

the transition 𝐸1 → 𝐸2:

𝑆 =
)𝐵12𝜌(𝜔

𝑅
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𝐿 𝜔 − 𝜔0 =

𝛾
2

2

𝜔 − 𝜔0
2 +

𝛾
2

2



Substituting this expression in
𝑑𝑊12

𝑑𝑡
= ℏ𝜔𝑅

∆𝑁0

1+
1

𝑆

:

𝑑𝑊12

𝑑𝑡
=

ℏ𝜔𝑅∆𝑁0𝑆0
𝛾
2

2

𝜔 − 𝜔0
2 +

𝛾
2

2
1 + 𝑆0

=
𝐶

𝜔 − 𝜔0
2 +

𝛾𝑠
2

2

This a Lorentzian profile with the increased halfwidth:

𝛾𝑠 = 𝛾 1 + 𝑆0

The halfwidth 𝛾𝑠 of the saturation-broadened line increases with the
saturation parameter 𝑆0 at the line center 𝜔0. If the induced transition

rate at 𝜔0 equals the total relaxation rate 𝑅, the saturation parameter

𝑆0 =
𝐵12𝜌(𝜔0)

𝑅
becomes equal to 1, which increases the linewidth by a

factor 2 compared to the unsaturated linewidth for weak radiation
fields.

2.3 SATURATION AND POWER 
BROADENING

WIDTHS AND 

PROFILES OF 

SPECTRAL 

PROFILES

𝑆𝜔 = 𝑆0

𝛾
2

2

𝜔 − 𝜔0
2 +

𝛾
2

2



Since the power
𝑑𝑊12

𝑑𝑡
absorbed per unit volume equals the intensity decrease per

centimeter

𝛼𝑠 𝜔 =
𝛼0 𝜔

1 + 𝑆𝜔
= 𝛼0 𝜔0

𝛾
2

2

𝜔 − 𝜔0
2 +

𝛾𝑠
2

2

where the unsaturated absorption profile is:

𝛼0 𝜔 = 𝛼0 𝜔0

𝛾
2

2

𝜔 − 𝜔0
2 +

𝛾
2

2
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of an incident wave with intensity 𝐼, we can derive the expression for the absorption 
coefficient:

𝑑𝐼 = −𝛼𝑠𝐼



This shows that the saturation decreases the absorption coefficient 𝛼 𝜔 by a factor of

1 + 𝑆𝜔.

At the line center, this factor has its maximum value 1 + 𝑆0, while it decreases for

increasing 𝜔 − 𝜔0 : The saturation is therefore strongest at the line center, and

approaches zero for 𝜔 − 𝜔0 → ∞.

This is the reason why the line broadens.

𝛼𝑠 𝜔 =
𝛼0 𝜔

1 + 𝑆𝜔
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EXERCISE 1

Determine the natural linewidth, the Doppler width, pressure broadening and shifts

for the neon transition 3𝑠2 → 2𝑝4 a 𝜆 = 632.8 𝑛𝑚 in a HeNe discharge at 𝑝𝐻𝑒 =

2 𝑚𝑏𝑎𝑟 , 𝑝𝑁𝑒 = 0.2 𝑚𝑏𝑎𝑟 at a gas temperature of 400 𝐾 . The relevant data

are: 𝜏 3𝑠2 = 58 𝑛𝑠 , 𝜏 2𝑝4 = 18 𝑛𝑠 , 𝜎𝐵 𝑁𝑒 − 𝐻𝑒 = 6 ∙ 10−14𝑐𝑚2 e 𝜎𝐵(

)
𝑁𝑒 −

𝑁𝑒 = 1 ∙ 10−13𝑐𝑚2.

EXERCISE 1

𝛿𝜈𝑛 =
σ𝑖 𝐴𝑖
2𝜋

=
1

2𝜋


𝑖

1

𝜏𝑖
=

1

2𝜋

1

𝜏 3𝑠2
+

1

𝜏 2𝑝4

=
1

2𝜋
1.72 ∙ 107𝑠−1 + 1.56 ∙ 107𝑠−1 = 1.16 ∙ 107𝑠−1 = 11.6 𝑀𝐻𝑧

Considering the lifetimes of the two levels 3𝑠2 e 2𝑝4, the natural linewidth is:
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𝛿𝜔𝐷 =
𝜔0

𝑐

8𝑘𝑇𝑙𝑛2

𝑚

The Doppler width is given by:

This expression can be rewritten in a more convenient way in terms of the Avogadro

number 𝑁𝐴 (number of molecules per mole). The mass of a mole is 𝑀 = 𝑁𝐴𝑚 and the gas

constant is 𝑅 = 𝑁𝐴𝑘. Using these relations, the Doppler width becomes:

𝛿𝜔𝐷 = 2
𝜔0

𝑐

2𝑅𝑇𝑙𝑛2

𝑀

Being: 𝑅 = 8.31
𝐽

𝑚𝑜𝑙 ∙ 𝐾

𝛿𝜐𝐷 = 7.16 ∙ 10−7𝜐0
𝑇

𝑀

you get:

EXERCISE 1
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𝛿𝜐𝐷 = 7.16 ∙ 10−7𝜐0
𝑇

𝑀

In our case:

𝜐0 =
𝑐

𝜆
= 4.74 ∙ 1014𝐻𝑧

𝑀 = 𝑀𝑁𝑒 = 20𝑢

with 𝑢 = 1.66 ∙ 10−27 kg unified atomic mass unit

Substituting the values:

𝛿𝜐𝐷 = 7.16 ∙ 10−7 ∙ 4.74 ∙ 1014𝐻𝑧
400 𝐾

20
= 1.52 𝐺𝐻𝑧

EXERCISE 1
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For broadening due to collisions, let us consider two contributions:

1. Collisions with He atoms

𝛿𝜐𝑃,𝐻𝑒 =
1

2𝜋
𝑛𝐻𝑒𝜎𝐵(𝑁𝑒 − 𝐻𝑒) ҧ𝑣

At 𝑝𝐻𝑒 = 2 𝑚𝑏𝑎𝑟 and T = 400 𝐾, using the ideal gas law:

𝑛𝐻𝑒 =
𝑝

𝑘𝑇
=

200 𝑃𝑎

1.38 ∙ 10−23
𝐽
𝐾 ∙ 400 𝐾

= 3.6 ∙ 1016𝑐𝑚−3

ҧ𝑣 =
8𝐾𝑇

𝜋𝜇
=

8 ∙ 1.38 ∙ 10−23
𝐽
𝐾
∙ 400 𝐾

3.14 ∙ 3.3 ∙ 1,66 ∙ 10−27 kg
= 1.59 ∙ 105𝑐𝑚/𝑠

Let’s determine the mean velocity. Being

EXERCISE 1

𝜇 =
𝑀𝐻𝑒𝑀𝑁𝑒

𝑀𝑁𝑒 +𝑀𝑁𝑒
= 3.3𝑢
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Then the line broadening due to collisions with He atoms:

𝛿𝜐𝑃,𝐻𝑒 =
1

2𝜋
𝑛𝐻𝑒𝜎𝐵 𝑁𝑒 − 𝐻𝑒 ҧ𝑣 =

3.6 ∙ 1016𝑐𝑚−3 ∙ 6 ∙ 10−14𝑐𝑚2 ∙ 1.59 ∙ 105𝑐𝑚/𝑠

2 ∙ 3.14
= 55 𝑀𝐻𝑧

2. Collisions with Ne atoms

𝛿𝜐𝑃,𝑁𝑒 =
1

2𝜋
𝑛𝑁𝑒𝜎𝐵(𝑁𝑒 − 𝑁𝑒) ҧ𝑣

𝑛𝑁𝑒 =
𝑝

𝑘𝑇
=

20 𝑃𝑎

1.38 ∙ 10−23
𝐽
𝐾
∙ 400 𝐾

= 3.6 ∙ 1015𝑐𝑚−3

The mean velocity: (𝜇 =
𝑀𝑁𝑒𝑀𝑁𝑒

𝑀𝑁𝑒+𝑀𝑁𝑒
=

1

2
𝑀𝑁𝑒 = 10𝑢)

ҧ𝑣 =
8𝐾𝑇

𝜋𝜇
=

8 ∙ 1.38 ∙ 10−23
𝐽
𝐾
∙ 400 𝐾

3.14 ∙ 10 ∙ 1,66 ∙ 10−27 kg
= 9,2 ∙ 104𝑐𝑚/𝑠

EXERCISE 1
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At 𝑝𝐻𝑒 = 0.2 𝑚𝑏𝑎𝑟 and T = 400 𝐾, using the ideal gas law:



𝛿𝜐𝑃,𝑁𝑒 =
1

2𝜋
𝑛𝑁𝑒𝜎𝐵 𝑁𝑒 − 𝑁𝑒 ҧ𝑣 =

3.6 ∙ 1015𝑐𝑚−3 ∙ 1 ∙ 10−13𝑐𝑚2 ∙ 9.2 ∙ 104𝑐𝑚/𝑠

2 ∙ 3.14
= 5𝑀𝐻𝑧

The total contribution to the line broadening due to collisions will be:

𝛿𝜐𝑃 = 𝛿𝜐𝑃,𝐻𝑒 + 𝛿𝜐𝑃,𝑁𝑒 = 55 𝑀𝐻𝑧 + 5 𝑀𝐻𝑧 = 60 𝑀𝐻𝑧

Natural linewidth 11.6 MHz

Doppler width 1.52 GHz

Collisional broadening 60 MHz

In summary, the different contributions to the line broadening of the transition will be:

Even though gas is at very low pressures (< 0.2% of atmospheric

pressure), Doppler broadening overcome all other contributions!

EXERCISE 1
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SPECTRAL 

PROFILES

Then the line broadening due to collisions with Ne atoms:



The output from a CO2 laser with 50 𝑊 at 𝜆 = 10 𝜇𝑚 is focussed into a sample of

SF6 molecules at the pressure 𝑝 = 1 𝑚𝑏𝑎𝑟 and T = 300 𝐾. The laser beam waist in

the focal plane is 0.5 𝑚𝑚. Being the broadening cross section 𝜎𝐵 = 5 ∙ 10−14𝑐𝑚2

and the absorption cross section 𝜎𝑎 = 10−14 𝑐𝑚2, determine which is the dominant

broadening mechanism for the absorption line.

EXERCISE 2

EXERCISE 2

Let’s neglect the natural linewidth. The pressure broadening will be:

𝛿𝜐𝑝 =
1

2𝜋
𝑛𝑆𝐹6𝜎𝐵 ҧ𝑣

At 𝑝𝑆𝐹6 = 1 𝑚𝑏𝑎𝑟 and T = 300 𝐾, using the ideal gas law:

𝑛𝑆𝐹6 =
𝑝

𝑘𝑇
=

100 𝑃𝑎

1.38 ∙ 10−23
𝐽
𝐾
∙ 300 𝐾

= 2.4 ∙ 1022 𝑚−3
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EXERCISE 2
The average velocity will be (𝑀𝑆𝐹6 = 146𝑢)

ҧ𝑣 =
8𝐾𝑇

𝜋𝑀𝑆𝐹6
=

8 ∙ 1.38 ∙ 10−23
𝐽
𝐾
∙ 400 𝐾

3.14 ∙ 146 ∙ 1,66 ∙ 10−27 kg
= 209 𝑚/𝑠

So, the collisional broadening will be:

𝛿𝜐𝑃 =
1

2𝜋
𝑛𝑆𝐹6𝜎𝐵 ҧ𝑣 =

2.4 ∙ 1022𝑚−3 ∙ 5 ∙ 10−18𝑚2 ∙ 209 𝑚/𝑠

2 ∙ 3.14
= 4𝑀𝐻𝑧

The saturation broadening 𝛿𝜐𝑠 caused by the absorption of laser light, in terms of

the saturation parameter 𝑆, is:

𝛿𝜐𝑠 = 𝛿𝜐𝑝 1 + 𝑆

The saturation parameter is defined as the ratio of the pumping rate to the
average relaxation rate .

The pumping rate 𝑃 can be expressed as:

𝑃 =
𝐼𝜎𝑎
ℎ𝜐

WIDTHS AND 
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EXERCISE 2

𝐼 =
𝑃𝐿
𝜋𝑟2

=
50𝑊

3.14 ∙ 0.52 ∙ 10−2𝑐𝑚2 = 6.4 ∙ 103
𝑊

𝑐𝑚2

where the intensity of the light can be expressed as the ratio between the power and the 
irradiated surface 𝐴; the latter is the area of the focused laser spot 𝐴 = 𝜋𝑟2 : 

Neglecting the natural linewidth, the average relaxation rate is:

𝛾 = 2𝜋𝛿𝜐𝑃

and then the saturation parameter can be expressed as:

𝑆 =
𝑃

𝛾
=

𝐼𝜎𝑎
2𝜋𝛿𝜐𝑃 ℎ𝜐

=
𝐼𝜎𝑎𝜆

2𝜋𝛿𝜐𝑃 ℎ𝑐

=
6.4 ∙ 103

𝑊
𝑐𝑚2 ∙ 10

−14 𝑐𝑚2 ∙ 10 ∙ 10−4𝑐𝑚

6.28 ∙ 4 ∙ 106𝐻𝑧 ∙ 6.63 ∙ 10−34𝐽𝑠 ∙ 3 ∙ 1010𝑐𝑚/𝑠
= 128

The saturation broadening will be:

𝛿𝜐𝑠 = 𝛿𝜐𝑝 1 + 𝑆 = 4 𝑀𝐻𝑧 129 = 44 𝑀𝐻𝑧WIDTHS AND 

PROFILES OF 

SPECTRAL 

PROFILES



EXERCISE 2
Finally, the Doppler width is:

𝛿𝜐𝐷 = 7.16 ∙ 10−7
𝑐

𝜆

𝑇

𝑀𝑆𝐹6
= 7.16 ∙ 10−7 ∙

3 ∙ 1010
𝑐𝑚
𝑠

10 ∙ 10−4𝑐𝑚
∙

300

146
= 30.8 𝑀𝐻𝑧

Collisional broadening 4 MHz

Doppler width 30.8 MHz

Saturation broadening 44 MHz

Saturation broadening is the dominant mechanism.
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PROFILES

In summary, the different contributions to the line broadening of the transition will be:


