
CHAPTER 3

ROTO-VIBRATIONAL SPECTROSCOPY



3.1 BORN-OPPENHEIMER APPROXIMATION

2

ROTO-

VIBRATIONAL 

SPECTROSCOPY

The Hamiltonian 𝐻 or a diatomic or polyatomic molecule is the sum of the kinetic energy

𝑇 and the potential energy 𝑉.

In a molecule the kinetic energy 𝑇 consists of contributions 𝑇𝑒 and 𝑇𝑛 from the motions

of the electrons and nuclei, respectively..

The potential energy comprises two terms, 𝑉𝑒𝑒 and 𝑉𝑛𝑛 due to coulombic repulsions

between the electrons and between the nuclei, respectively, and a third term 𝑉𝑒𝑛 due to

attractive forces between the electrons and nuclei.

So, the Hamiltonian 𝐻 has the form:

𝐻 = 𝑇 + 𝑉 = 𝑇𝑒 + 𝑇𝑛 + 𝑉𝑒𝑒 + 𝑉𝑛𝑛 + 𝑉𝑒𝑛

For fixed nuclei 𝑇𝑛 = 0 and 𝑉𝑛𝑛 = 𝑐𝑜𝑠𝑡, and there is a set of electronic wave

functions 𝜓𝑒 which satisfy the Schrodinger equation:

𝐻𝑒𝜓𝑒 = 𝐸𝑒𝜓𝑒

where 𝐻𝑒 = 𝑇𝑒 + 𝑉𝑒𝑒 + 𝑉𝑒𝑛
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Since 𝐻𝑒 depends on nuclear coordinates, because of the 𝑉𝑒𝑛, so do 𝜓𝑒 and 𝐸𝑒 will
depend on nuclear coordinates.

𝐻𝑒 = 𝑇𝑒 + 𝑉𝑒𝑛 + 𝑉𝑒𝑛

In the Born–Oppenheimer approximation proposed in 1927, it is assumed that vibrating

nuclei move so slowly compared with electrons.

In other words, the electrons "adjust“ instantaneously to any nuclear motion: they
are said to follow the nuclei. .

For this reason, 𝐸𝑒 can be treated as part of the potential field in which the nuclei
move, so that:

𝐻𝑛 = 𝑇𝑛 + 𝑉𝑛𝑛 + 𝐸𝑒

and the Schrodinger equation for nuclear motion will be:

𝐻𝑛𝜓𝑛 = 𝐸𝑛𝜓𝑛

3.1 BORN-OPPENHEIMER APPROXIMATION

ROTO-

VIBRATIONAL 

SPECTROSCOPY



4

It follows from the Born–Oppenheimer approximation that the total wave function 𝜓

can be factorized:

ሻ𝜓 = 𝜓𝑒(𝑞, 𝑄ሻ𝜓𝑛(𝑄

where the 𝑞 are electron coordinates and 𝑄 as well as 𝑞.

Impose it as a solution of the Schrodinger equation of the nuclei-electron system:

𝐻𝜓 = 𝐸𝜓

It follows:

𝐸 = 𝐸𝑒 + 𝐸𝑛

The wave function 𝜓𝑛 can be factorized further into a vibrational part 𝜓𝑣 and

a rotational part 𝜓𝑟:

𝜓𝑛 = 𝜓𝑣𝜓𝑟
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Thus, it follows that the energy of the nuclei can be expressed as the sum of a

contribution 𝐸𝑣 given by vibration and one 𝐸𝑟 given by rotation, 𝐸𝑛 = 𝐸𝑣 + 𝐸𝑟.

In summary, the wave function of a molecule can be factorized as:

𝜓 = 𝜓𝑒𝜓𝑣𝜓𝑟

and its energy eigenvalues as:

𝐸 = 𝐸𝑒 + 𝐸𝑣 + 𝐸𝑟

In conclusion, it is for these reasons that we can treat electronic,

vibrational and rotational spectroscopy separately.

similarly, as we saw for a centrosymmetric finite potential in which the wave function is
factorized into a radial part and an angular part.
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A useful approximate model for the end-over-end rotation of a diatomic molecule is

that of the rigid rotor in which the bond joining the nuclei is regarded as a rigid,

weightless rod.

To study the rotational spectra of molecules, it is useful to classify them according to

the main moments of inertia.

The moment of inertia 𝐼 of a molecule referred to any axis passing through its center

of mass is defined as:

𝐼 =

𝑖

𝑚𝑖𝑟𝑖
2

where 𝑚𝑖 are the masses of the single atoms and 𝑟𝑖 their distances from the axis. 

One can always find one axis, called the 𝑐 − 𝑎𝑥𝑖𝑠, about which the
moment of inertia has its maximum value, and another axis, labeled
the 𝑐 − 𝑎𝑥𝑖𝑠, about which 𝐼 has its minimum value. It can be shown
that the a and c axes must be mutually perpendicular.
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These two axes, together with another axis that is perpendicular to both (𝑏 − 𝑎𝑥𝑖𝑠),

constitute the principal axes of inertia referred to the principal moments of inertia 𝐼𝑎,

𝐼𝑏 and 𝐼𝑐.

Thus, according to convention, the principal axes are ordered:

𝐼𝑐 ≥ 𝐼𝑏 ≥ 𝐼𝑎

Depending on the relative size of the inertia moments, 𝐼𝑎, 𝐼𝑏 and 𝐼𝑐,

rotors can de divided into four classes: linear rotors, symmetric tops,

spherical tops and asymmetric rotors.
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3.2.2 Linear rotors. Frequencies. Selection rules. Intensity
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For a linear rotor:

𝐼𝑏 = 𝐼𝑐
𝐼𝑎 = 0

where 𝑏 − 𝑎𝑥𝑖𝑠 and c − 𝑎𝑥𝑖𝑠 may be in any direction perpendicular to the

internuclear a − 𝑎𝑥𝑖𝑠

a-axis

b-axis

c-axis

x
y

z
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This rigid rotor model has two masses 𝑚1 e 𝑚2 attached to each other with a fixed

distance between the two masses.

In the Solid-State Physics course (Chapter 5, paragraph 5.5.2) we set the

Schrodinger equation for a centrosymmetric potential in spherical coordinates.

We separate the eigenfunction in an angular part Υ θ, φ and a radial

part ሻ𝑅(𝑟 .

The angular part has been expressed in terms of the Legendrian

operator Λ2 .

3.2 ROTATIONAL SPECTROSCOPY
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1

ሻ𝑅(𝑟

𝜕

𝜕𝑟
𝑟2

ሻ𝜕𝑅(𝑟

𝜕𝑟
+ Λ2Υ θ, φ = −

2𝑚𝑟2𝐸

ℏ2

At 𝑟 fixed, we determined the angular part of the wave function by solving angular

part of Schrodinger equation.

Λ2Υ θ,φ = ℇΥ θ, φ

where ℇ are the energy eigenvalues of the angular part.

This is the equation typically solved for the angular momentum operator in

spherical coordinates, and the eigenfunctions are spherical harmonics :

Υ𝐽
𝑚 θ, φ = 𝐴𝐽,𝑚𝐽

𝑒𝑖𝑚𝐽φ𝑃𝐽(𝑐𝑜𝑠𝜃ሻ

where 𝑃𝑙(𝑐𝑜𝑠𝜃ሻ are Legendre polynomials in sine and cosine terms,
and 𝐽 and 𝑚𝐽 are integers. Fixed 𝐽 = 0,1,2, …, 𝑚𝐽 assumes only the

following values:, −𝐽 + 1… 𝐽, 𝐽 + 1.
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𝐽 is the total angular momentum and 𝑚𝐽 is the z-component of angular momentum.

Hereafter, we will omit the subscript 𝐽 of the quantum number 𝑚𝐽.

The eigenvalues are :

ℇ = 𝐽 𝐽 + 1

For linear rotors, we can use the same model by introducing the reduced mass

𝜇 =
𝑚1𝑚2

𝑚1 +𝑚2

With this assumption, the rotational energies are :

𝐸𝑟 =
ℎ2

8𝜋2𝜇𝑟2
𝐽 𝐽 + 1

Being the moment of inertia for the reduced mass defined as 𝐼 = 𝜇𝑟2:

𝐸𝑟 =
ℎ2

8𝜋2𝐼
𝐽 𝐽 + 1 =

ℏ2

2𝐼
𝐽 𝐽 + 1

3.2 ROTATIONAL SPECTROSCOPY
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The same expression is valid for any linear

polyatomic molecule but, since 𝐼 is larger than

that of a diatomic molecule, rotational energy

levels 𝐸𝑟 are much closer to each other.

In spectroscopy, the measurable physical quantity is the frequency (not energy).

Then, the rotational energy levels 𝐸𝑟 are usually converted in angular frequency

dividing 𝐸𝑟 by ℏ:

𝐹 𝐽 =
𝐸𝑟
ℏ
=

ℏ

2𝐼
𝐽 𝐽 + 1 = 𝐵𝐽(𝐽 + 1ሻ

𝐹 𝐽 and 𝐵 have the same unit as the angular frequency.

𝐵 is also known as the rotational constant.

Its estimation by appropriate spectroscopic techniques allows the

calculation of internuclear distances.

3.2 ROTATIONAL SPECTROSCOPY
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3.2.2 Linear rotors. Frequencies. Selection rules. Intensity

A selection rule, or transition rule, formally constrains the possible transitions of a
system from one quantum state to another.

A selection rule consists of two parts: a general and a specific one.

The general selection rule constrains the requirements for a given spectrum to be
observable.

Once the general selection rule is verified, the specific selection rule is applied

to the atom or molecules to determine whether a certain transition within the

spectrum can occur.

Selection rules determine all possible transitions between quantum
levels as a result of the absorption or emission of electromagnetic
radiation.ROTO-

VIBRATIONAL 

SPECTROSCOPY
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The electromagnetic radiation has an oscillating electric field 𝐸0cos(𝜔𝑡ሻ that interacts
with the molecule through a dipole transition.

In the Chapter 1, we have defined the dipole matrix element between two states 𝑢𝑎
and 𝑢𝑏 as:

𝐷𝑎𝑏 = න𝑢𝑎
∗𝝁𝑢𝑏𝑑𝜏

where 𝝁 = −𝑒𝒓 is the dipole operator.

Consider an electric field oriented along the z-axis (in the laboratory
frame). We can evaluate the interaction between the transition dipole
along 𝑥 −,𝑦 − or 𝑧 −axis of the molecule with the radiation field.

If 𝑫𝒂𝒃 is zero, the transition is forbidden. 

The selection rule determines the condition for 𝑫𝒂𝒃 ≠ 𝟎.

3.2 ROTATIONAL SPECTROSCOPY
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For a rigid rotor with the effective mass approximation, the eigenstates of the

Schrodinger equation are spherical harmonics Υ𝑚
𝐽 θ, φ and then the dipole matrix

element for the transition ۧ|𝐽′, 𝑚′ → ۧ|𝐽,𝑚 is:

𝐷𝐽,𝑚→𝐽′,𝑚′ = න
0

2𝜋

න
0

𝜋

Υ𝐽′
𝑚′∗ θ, φ 𝝁Υ𝐽

𝑚 θ, φ 𝑠𝑒𝑛θdθdφ

We notice immediately that the molecule must have a permanent dipole moment to
have a rotational spectrum (the general selection rule).

So heteronuclear diatomic molecules (𝐶𝑂, 𝑁𝑂, 𝐻𝐹) have a rotational spectrum, while
homonuclear diatomic molecules (H2, N2, Cl2) cannot have a rotational spectrum.

Similarly, asymmetric polyatomic linear molecules such as O = C = S,

H − C ≡ N (namely, without a center of inversion) can have rotational

transitions, while symmetrical polyatomic linear molecules (ovvero con

un centro di inversione) such as S = C = S e H − C ≡ C − H (with a

center of inversion) cannot not have a pure rotational spectrum.

𝐷𝑎𝑏 = න𝑢𝑎
∗𝝁𝑢𝑏𝑑𝜏

3.2 ROTATIONAL SPECTROSCOPY
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We replace in the the dipole matrix element 𝐷𝐽,𝑚→𝐽′,𝑚′ the expression of harmonic

spheres in terms of Legendre polynomials. Then, we use the canonical substitution

𝑥 = 𝑐𝑜𝑠𝜃, leading to:

𝐷𝐽,𝑚→𝐽′,𝑚′ = 𝐴𝐽,𝑚𝐴𝐽′,𝑚′𝜇න
0

2𝜋

𝑒𝑖(𝑚−𝑚′ሻφdφන
−1

1

൯𝑃𝐽′(𝑥ሻ𝑃𝐽(𝑥 𝑑𝑥

Υ𝐽
𝑚 θ, φ = 𝐴𝐽,𝑚𝐽

𝑒𝑖𝑚𝐽φ𝑃𝐽(𝑐𝑜𝑠𝜃ሻ

The integral in the φ variable is nonzero only when 𝑚 = 𝑚′, namely ∆𝒎 = 𝟎.

This represents the first part of the specific selection rule for rotational
transitions.

Integrating into the variable φ with 𝑚 = 𝑚′ condition:

𝐷𝐽,𝑚→𝐽′,𝑚 = 2𝜋𝜇𝐴𝐽,𝑚𝐴𝐽′,𝑚න
−1

1

൯𝑃𝐽′(𝑥ሻ𝑃𝐽(𝑥 𝑑𝑥

3.2 ROTATIONAL SPECTROSCOPY
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𝐷𝐽,𝑚→𝐽′,𝑚 = 2𝜋𝜇𝐴𝐽,𝑚𝐴𝐽′,𝑚න
−1

1

൯𝑃𝐽′(𝑥ሻ𝑃𝐽(𝑥 𝑑𝑥

At this point it would be necessary to

calculate all products among all

possible combinations (𝐽, 𝐽′ሻ.

The first 5 Legendre

polynomials are represented in

Figure:

Qualitatively, if we consider the symmetry of the polynomials

with respect to the point 𝑥 = 0 based on even or odd indexes, it

is worth noticing that the integral will be non-null only when 𝑱′ =

𝑱 + 𝟏 or 𝑱′ = 𝑱 − 𝟏.
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The transition angular frequencies are then given by: ሻ𝐹 𝐽 = 𝐵𝐽(𝐽 + 1

ሻ𝜔 = 𝐹 𝐽 + 1 − 𝐹 𝐽 = 𝐵 𝐽 + 1 𝐽 + 2 − 𝐵𝐽 𝐽 + 1 = 𝐵 𝐽 + 1 𝐽 + 2 − 𝐽 = 2𝐵(𝐽 + 1

It then follows that the specific selection rule for rotational transitions is:

∆𝑱 = ±𝟏 and   ∆𝒎 = 𝟎

The rotational spectra of heteronuclear diatomic molecules are the easiest to be

recognized and analyzed because they consist of equally spaced absorption lines.
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A rotational spectrum of a heteronuclear diatomic molecule appears as:

By measuring the frequency spacing between two adiacent lines of the comb, it is

possible to determine the rotational constant 𝐵 and then the length of the

chemical bond.
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3.2.2 Linear rotors. Frequencies. Selection rules. Intensity

The intensities of the rotational lines depend on the population of the lowest energy
state of the transition.

The population 𝑁𝐽 of the 𝐽-th level with respect to 𝑁0 is given by the Boltzmann

distribution:

𝑁𝐽
𝑁0

= (2𝐽 + 1ሻ𝑒−
𝐸𝑟
𝐾𝑇

where (2𝐽 + 1ሻ is the degeneration of the 𝐽-th level.

Degeneration arises from the fact that in the absence of an electric or
magnetic field, (2𝐽 + 1ሻ degenerate levels corresponding to the same
energy eigenvalue are possible, resulting from the number of possible
values for 𝑚𝐽.
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It is immediately observed that
𝑁𝐽

𝑁0
consists of two opposite terms: as 𝐽 increases, the

term (2𝐽 + 1ሻ increases, while the term 𝑒−
𝐸𝑟
𝐾𝑇 rapidly decreases.

𝑁𝐽
𝑁0

= (2𝐽 + 1ሻ𝑒−
𝐸𝑟
𝐾𝑇

The result is that starting from small values of 𝐽, the (2𝐽 + 1ሻ term

dominates:
𝑁𝐽

𝑁0
increases as 𝐽 increases. Then a maximum is reached as a

trade-off; after that, the exponential term becomes dominant and
𝑁𝐽

𝑁0
goes

quickly to zero.

In the next slide, the values of three terms (2𝐽 + 1ሻ, 𝑒−
𝐸𝑟
𝐾𝑇 and 

𝑁𝐽

𝑁0
are shown for increasing 𝐽 values, calculated for the CO molecule:

𝐸𝑟 =
ℏ2

2𝐼
𝐽 𝐽 + 1

3.2.2 Linear rotors. Frequencies. Selection rules. Intensity
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𝐸𝑟 =
ℏ2

2𝜇𝑟2
𝐽 𝐽 + 1

𝑁𝐽
𝑁0

= (2𝐽 + 1ሻ𝑒−
𝐸𝑟
𝐾𝑇

3.2.2 Linear rotors. Frequencies. Selection rules. Intensity
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Let’s plot the
𝑁𝐽

𝑁0
values as a function of the wavenumbers (and then 𝐽 ):

The population shows a maximum at the

value 𝐽 = 𝐽𝑚𝑎𝑥, calculated by solving the

equation:

𝑑
𝑁𝐽
𝑁0
𝑑𝐽

= 0

The result is:

𝐽𝑚𝑎𝑥 =
𝐾𝑇

2ℎ𝐵
−
1

2

For the rotational spectrum of CO molecule, 𝐽𝑚𝑎𝑥 = 7.

3.2.2 Linear rotors. Frequencies. Selection rules. Intensity

3.2 ROTATIONAL SPECTROSCOPY

ROTO-

VIBRATIONAL 

SPECTROSCOPY



24

3.2.2 Linear rotors. Frequencies. Selection rules. Intensity

Centrifugal distortion

In fact, the chemical bond cannot be
assumed as rigid. It can be represented (in
elastic approximation) by a spring that
connects the nuclei, as we will see in
Chapter 3.3.

As the rotational velocity of a molecule increases (that is, as the 𝐽
increases), its bond length increases and its moment of inertia increases. In
other words, the faster rate of spin increases the centrifugal force pushing
outward on the molecules resulting in a longer average bond length.

The spring stretches, 𝑟 increases and so 𝐵 decreases. As a
result, the frequency spacing is not more constant, but
decreases at high 𝐽 values.

𝐵 =
ℏ

2𝐼

3.2 ROTATIONAL SPECTROSCOPY
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The centrifugal distortion is related to the changing bond length of a molecule. A real
molecule does not behave as a rigid rotor that has a rigid rod for a chemical bond, but

rather acts as if it has a spring for a chemical bond.
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This effect is taken into account by introducing a second order correction for 𝐹 𝐽

𝐹 𝐽 = 𝐵𝐽 𝐽 + 1 − 𝐷𝐽2 𝐽 + 1 2

where 𝐷 is the centrifugal distortion constant and is always positive for diatomic
molecules.

The transition frequencies are now given by:

𝜔 = 𝐹 𝐽 + 1 − 𝐹 𝐽
= 𝐵 𝐽 + 1 𝐽 + 2 − 𝐷 𝐽 + 1 2 𝐽 + 2 2 − 𝐵𝐽 𝐽 + 1 + 𝐷𝐽2 𝐽 + 1 2

= 2𝐵 𝐽 + 1 + 𝐷 𝐽 + 1 2 𝐽2 − 𝐽2 − 4𝐽 − 4 = 2𝐵 𝐽 + 1 − 4𝐷 𝐽 + 1 3

The centrifugal distortion constant depends on the stiffness of the bond,

and it is not surprising that it can be related to the vibration

wavenumber.

3.2.2 Linear rotors. Frequencies. Selection rules. Intensity

Centrifugal distortion
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3.2.2 Linear rotors. Frequencies. Selection rules. Intensity

Centrifugal distortion

3.2 ROTATIONAL SPECTROSCOPY

ROTO-

VIBRATIONAL 

SPECTROSCOPY

Rotational Levels

Rotational Spectrum
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3.2.3 Symmetrical rotor molecules. Prolates. Oblates

In symmetrical rotor molecules two principal moments of inertia are the same, and the

third different.

We distinguish two subcategories:

Prolates

𝐼𝑏 = 𝐼𝑐 > 𝐼𝑎

Oblates

𝐼𝑏 = 𝐼𝑎 > 𝐼𝑐
𝐶𝐻3𝐶𝑙

𝐵𝐶𝑙3
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In a diatomic or linear polyatomic molecule, the rotational angular momentum vector 𝑃
lies along the axis of rotation.

In a prolate symmetric rotor, 𝑃 need not be perpendicular to the 𝑎 axis.

In general, it takes up any
direction in space and the

molecule rotates around 𝑃.

𝐶𝐻3𝐼

3.2 ROTATIONAL SPECTROSCOPY
3.2.3 Symmetrical rotor molecules. Prolates. Oblates
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We identify a component of 𝑃 along the 𝑎 axis 𝑃𝑎
(and therefore a moment of inertia 𝐼𝑎 ) and a
component 𝑃⊥ orthogonal to the 𝑎ax is (with a
moment of inertia 𝐼⊥).

Using the classical relation between the angular momentum 𝑃, moment of inertia 𝐼

and rotational energy 𝐸𝑟:

𝐸𝑟 =
𝑃2

2𝐼

We can rewrite it considering the two contributions of 𝑃:

𝐸𝑟 =
𝑃𝑎

2

2𝐼𝑎
+
𝑃⊥

2

2𝐼⊥

In our case, 𝑃⊥
2 = 𝑃𝑏

2 + 𝑃𝑐
2 and so:

𝐸𝑟 =
𝑃𝑎

2

2𝐼𝑎
+
𝑃𝑏

2 + 𝑃𝑐
2

2𝐼⊥

3.2 ROTATIONAL SPECTROSCOPY
3.2.3 Symmetrical rotor molecules. Prolates. Oblates

ROTO-

VIBRATIONAL 

SPECTROSCOPY



30

𝐸𝑟 =
𝑃𝑎

2

2𝐼𝑎
+
𝑃𝑏

2 + 𝑃𝑐
2

2𝐼⊥

On the other hand, the following relation for the rotational angular momentum

vector must be verified:
𝑃2 = 𝑃𝑎

2 + 𝑃𝑏
2 + 𝑃𝑐

2

Replacing 𝑃𝑏
2 + 𝑃𝑐

2 = 𝑃2 − 𝑃𝑎
2 one obtain:

𝐸𝑟 =
𝑃2

2𝐼⊥
+ 𝑃𝑎

2 1

2𝐼𝑎
−

1

2𝐼⊥

If we replace the square of the classical angular momentum with the eigenvalues of

the angular momentum operator:

𝑃2 → 𝐽(𝐽 + 1ሻℏ2

we get:

𝐸𝑟 =
𝐽 𝐽 + 1 ℏ2

2𝐼⊥
+ 𝑃𝑎

2 1

2𝐼𝑎
−

1

2𝐼⊥
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We can then define as before:

𝐹 𝐽 =
𝐸𝑟
ℏ
=
𝐽 𝐽 + 1 ℏ

2𝐼⊥
+ 𝑃𝑎

2 1

2𝐼𝑎ℏ
−

1

2𝐼⊥ℏ

We note that the first terms describe the rotation around an axis orthogonal to the
𝑎 axis, which can be or the 𝑏 axis or the 𝑏 axis having the same moment of inertia 𝐼𝑏 =
𝐼𝑐 = 𝐼⊥. This is the analogous case of a diatomic molecule.

Using the result obtained for the diatomic molecule:

𝐹 𝐽 = 𝐵𝐽(𝐽 + 1ሻ + 𝑃𝑎
2 1

2𝐼𝑎ℏ
−

1

2𝐼bℏ

where

𝐵 =
ℏ

2𝐼𝑏
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𝐹 𝐽 = 𝐵𝐽(𝐽 + 1ሻ + 𝑃𝑎
2 1

2𝐼𝑎ℎ
−

1

2𝐼⊥ℎ

𝑃𝑎 represents the projection of angular momentum on the 𝑎 axis. It can be quantized and 

can take only the values:

𝑃𝑎 = 𝐾ℏ

where 𝐾 = −𝐽,… , 0, … 𝐽 is a second rotational quantum number (as for the quantum
number 𝑚).

So, replacing it in the previous expression, we have:

𝐹 𝐽, 𝐾 = 𝐵𝐽(𝐽 + 1ሻ + 𝐾2 𝐴 − 𝐵
where

𝐴 =
ℏ

2 𝐼𝑎

For oblate rotors, the description is the same as long as you replace the 𝑐

axis with the 𝑎 axis. Following the same steps, the result is:

𝐹 𝐽, 𝐾 = 𝐵𝐽(𝐽 + 1ሻ + 𝐾2 𝐶 − 𝐵 con 𝐶 =
ℏ

2𝐼𝑐

𝐹 𝐽 = 𝐵𝐽(𝐽 + 1ሻ + 𝑃𝑎
2 1

2𝐼𝑎ℏ
−

1

2𝐼bℏ
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The rotational energy levels for a prolate and an oblate symmetric rotor are shown

schematically in Figure:
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𝐹 𝐽, 𝐾 = 𝐵𝐽(𝐽 + 1ሻ + 𝐾2 𝐴 − 𝐵

𝐹 𝐽, 𝐾 = 𝐵𝐽(𝐽 + 1ሻ + 𝐾2 𝐶 − 𝐵 oblate rotors

prolate rotors

Although these present a much more complex picture than those for a linear molecule

the fact that the selection rules:

∆𝐽 = ±1 and ∆𝐾 = 0

results in the expression for the transition frequencies or wavenumbers:

ሻ𝜔 = 𝐹 𝐽 + 1, 𝐾 − 𝐹 𝐽 = 2𝐵(𝐽 + 1

This is the same as for a diatomic or linear polyatomic molecule and,

again, the transitions show an equal spacing of 2𝐵.

The effects of centrifugal distortion are not included.
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3.2.4 Spherical rotor molecules

In Spherical rotor molecules three principal moments of inertia are the same

𝐼𝑏 = 𝐼𝑐 = 𝐼𝑎

Examples of spherical rotor molecules are:

CH4 SF6

We tend to think of a spherical rotor molecule as having no permanent dipole

moment and, therefore, no rotational spectra.

However, rotation about any of the C3 axes (i.e. any of the four axes

in methane containing a C–H bond) results in a centrifugal distortion

in which the other three hydrogen atoms are thrown outwards

slightly from the axis.
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This converts the molecule into a symmetric rotor and gives it a small dipole moment
resulting in a very weak rotational spectrum.

Neglecting centrifugal distortion, the rotation term values for a spherical rotor are

given by:

ሻ𝐹 𝐽 = 𝐵(𝐽 + 1

This is an identical expression to that for a diatomic or linear polyatomic

molecule and, as the rotational selection rule is the same, namely: ∆𝐽 = ±1,

and the transition wavenumbers or frequencies are given by:

ሻ𝜐 = 𝐹 𝐽 + 1 − 𝐹 𝐽 = 2𝐵(𝐽 + 1

CH4 SF6

3.2.4 Spherical rotor molecules
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3.2.5 Asymmetric rotor molecules

Asymmetric rotor molecules have three different moments of inertia:

𝐼𝑏 ≠ 𝐼𝑐 ≠ 𝐼𝑎

Although these molecules form much the largest group we shall take

up the smallest space in considering their rotational spectra.

The reason for this is that there are no closed formulae for their rotational term values.

Instead, these term values can be determined accurately only by a matrix

diagonalization for each value of 𝐽, which remains a good quantum number.

At a simple level, the rotational transitions of near-symmetric rotors are easier to

understand. For a prolate or oblate near-symmetric rotor the rotational term values

are given, approximately, by:

𝐹 𝐽, 𝐾 ≃ ෨𝐵𝐽(𝐽 + 1ሻ + 𝐾2 𝐴 − ෨𝐵 for a prolate rotor

𝐹 𝐽, 𝐾 ≃ ෨𝐵𝐽(𝐽 + 1ሻ + 𝐾2 𝐶 − ෨𝐵 for an oblate rotor

෨𝐵 =
1

2
𝐵 + 𝐶 for a prolate rotor

෨𝐵 =
1

2
𝐵 + 𝐴 for an oblate rotor

where
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3.3.1 Harmonic oscillator

A model to describe the vibrations of a diatomic molecule is to consider the interatomic

chemical bond as a harmonic oscillator:

For small displacements, stretching and bond compressions follow Hooke's law:

𝐹orce = −
𝑑𝑉 𝑥

𝑑𝑥
= −𝑘𝑥

where 𝑉 is the potential, 𝑘 is the spring constant and 𝑥 = 𝑟 − 𝑟𝑒 is the
displacement with respect to the equilibrium length 𝑟𝑒.

Integrating it, 𝑉 𝑥 =
1

2
𝑘𝑥2. 

The Hamiltonian of the harmonic oscillator will be:

𝐻 = −
ℏ2

2𝜇

𝑑2

𝑑𝑥2
+
1

2
𝑘𝑥2

where 𝜇 is the reduced mass of the nuclei. 

stretching

compression
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The energy eigenvalues of the Schrodinger equation (and so the vibrational energy levels

of a diatomic molecule treated in the harmonic oscillator approximation) are:

𝐸𝑛 = ℏ𝜔 𝜐 +
1

2

where 𝜐 = 0,12, . . and 𝜔 are the classical angular frequencies given by:

𝜔 =
𝑘

𝜇

So, the vibrational levels are equispaced BY ℏ𝜔 and the lowest energy level

corresponding to 𝜐 = 0 has energy 𝐸0 =
ℏ𝜔

2
.

Eigenfunctions 𝜓𝜐 are in the form:

𝜓𝜐 =
1

2𝜐𝜐! 𝜋
𝐻𝜐(𝑦ሻ𝑒

−
𝑦2

2

where 𝐻𝜐(𝑦ሻ are Hermite polynomials and 𝑦 =
4𝜋2𝜐𝜔

ℎ
𝑥
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The Hermite polynomials are:

Figure shows the potential 𝑉 𝑟 as a function

of the bond length 𝑟.

𝑟𝑒 represents the equilibrium length of

the bond.

The energy levels and the

corresponding wave

functions for 𝜐 = 0,1,2,3 and

28 are also represented.
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𝑘 values represent the strength of the bond.

Physically, the strength of the spring representing the

bond is affected by a subtle balance of nuclear

repulsions, electron repulsions and electron–nuclear

attractions.

None of these is affected by nuclear mass and,

therefore, k is not affected by isotopic substitution.

𝐺 𝜐 =
𝐸𝜐
ℏ
= 𝜔 𝜐 +

1

2

which allows to describe energy levels in terms of frequencies, i.e. a

measurable quantity.

m1 m2

equilibrium

stretching

compression

F F
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3.3.2 Infrared spectra

The transition moment for a transition between lower and upper states with wave

functions 𝑢𝑎 and 𝑢𝑏 is given by:

𝐷𝑎𝑏 = න𝑢𝑎
∗𝝁𝑢𝑏𝑑𝑥

where 𝝁 = −𝑒𝒙 is the dipole moment operator and 𝑥 is the displacement of the
internuclear distance from equilibrium.

The dipole moment 𝝁 is zero for a homonuclear diatomic molecule, resulting in 𝐷𝑎𝑏 =
0, and all vibrational transitions being forbidden.

The eigenstates are the functions 𝜓𝜐 :

𝐷𝜐′𝜐′′ = න𝜓𝜐′
∗ 𝝁𝜓𝜐′′𝑑𝑥

For a heteronuclear diatomic molecule, 𝜇 ≠ 0 and varies with 𝑥.

𝜓𝜐 =
1

2𝜐𝜐! 𝜋
𝐻𝜐(𝑦ሻ𝑒

−
𝑦2

2
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For small displacements, you can expand 𝜇 in Taylor series around the equilibrium

configuration (identified by subscript 𝑒):

𝝁 = 𝝁𝒆 +
𝑑𝝁

𝑑𝑥
𝑒

𝑥 +
1

2!

𝑑2𝝁

𝑑𝑥2
𝑒

𝑥2 +⋯

The transition moment now becomes:

𝐷𝜐′𝜐′′ = 𝝁𝒆න𝜓𝜐′
∗ 𝜓𝜐′′𝑑𝑥 +

𝑑𝝁

𝑑𝑥
𝑒

න𝜓𝜐′
∗ 𝑥𝜓𝜐′′𝑑𝑥 +⋯

Since 𝜓𝜈′ and 𝜓𝜈′′ are eigenfunctions of the same hamiltonian, when 𝜈′ ≠ 𝜈′′:

න𝜓𝜐′
∗ 𝜓𝜐′′𝑑𝑥 = 0

Thus:

𝐷𝜐′𝜐′′ =
𝑑𝝁

𝑑𝑥
𝑒

න𝜓𝜐′
∗ 𝑥𝜓𝜐′′𝑑𝑥 +⋯

𝐷𝜐′𝜐′′ = න𝜓𝜐′
∗ 𝝁𝜓𝜐′′𝑑𝑥

3.3.2 Infrared spectra
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Using the expressions found for 𝜓𝜐 it can be shown that 

𝐷𝜐′𝜐′′ is non-zero if:

∆𝜐 = ±1

𝜓𝜐 =
1

2𝜐𝜐! 𝜋
𝐻𝜐(𝑦ሻ𝑒

−
𝑦2

2

This constitutes the vibrational selection rule. 

In the harmonic oscillator, where all level spacings are equal, all transitions obeying this
selection rule are coincident at a wavenumber 𝜔.

At the thermal equilibrium, the population 𝑁𝜈 of the 𝜈-th vibrational level is related to 𝑁0
of the lowest energy level by the Boltzmann factor:

𝑁𝜐
𝑁0

= 𝑒−
𝐸𝜐
𝐾𝑇

Each vibrational transition observed in the gas phase gives rise to what is
called a ‘band’ in the spectrum..

The word ‘line’ is reserved for describing a transition between rotational
levels associated with the two vibrational levels giving rise to the fine
structure of a band.

3.3.2 Infrared spectra
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3.3.3 Electrical and mechanical harmonicity

Taylor's series expansion of the electric dipole moment 𝝁 contains terms in 𝑥 to the
second and higher powers.

The effect of higher terms is known as anharmonicity and, because this particular kind of
anharmonicity is concerned with electrical properties of a molecule, it is referred to as
electrical anharmonicity.

𝝁 = 𝝁𝒆 +
𝑑𝝁

𝑑𝑥
𝑒

𝑥 +
1

2!

𝑑2𝝁

𝑑𝑥2
𝑒

𝑥2 +⋯

One effect of it is to cause the vibrational selection rule ∆𝜈 = ±1, ±2,±3,…

Since electrical anharmonicity is usually small, the effect is to make only a very small

contribution to the intensities of ∆𝜈 = ±2,±3,….

These transitions are known as vibrational overtones.

When the transition ∆𝜈 = ±1is observed, we refer as fundamental
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Just as the electrical behaviour of a real diatomic molecule is not accurately harmonic,

neither is its mechanical behaviour.

The potential function, vibrational energy levels and wave functions were derived by

assuming that vibrational motion obeys Hooke’s law, but this assumption is reasonable

only when 𝑟 is not very different from 𝑟𝑒 (i.e. when 𝑥 is small).

At large values of 𝑟 we know that the molecule dissociates: two neutral
atoms are formed and, since they do not influence each other, the force
constant is zero and 𝑟 can then be increased to infinity with no further
change of the potential energy 𝑉.

Therefore, the potential energy curve flattens out at 𝑉 = 𝐷𝑒 ,
where 𝐷𝑒 is the dissociation energy measured relative to the
equilibrium potential energy.

𝐹𝑜𝑟𝑧𝑎 𝑑𝑖 𝑟𝑖𝑐ℎ𝑖𝑎𝑚𝑜 = −
𝑑𝑉 𝑥

𝑑𝑥
= −𝑘𝑥

where 𝑉 is the potential, 𝑘 is the elastic constant and 𝑥 = 𝑟 − 𝑟𝑒 is the
displacement with respect to the equilibrium length 𝑟𝑒.
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As dissociation is approached the force constant 𝑘 → 0 and the bond gets

weaker. The effect is to make the potential energy curve shallower than for a

harmonic oscillator, when 𝑟 > 𝑟𝑒.

At small values of 𝑟, the positive charges on the two nuclei cause

mutual repulsion, which increasingly opposes their approaching

each other. Consequently, the potential energy curve is steeper than

for a harmonic oscillator, as the figure also shows.
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The deviations found in the curve for a real molecule from that resulting from the
harmonic oscillator approximation are due to mechanical anharmonicity.

A molecule may show both electrical and mechanical anharmonicity, but the latter is
generally much more important, and it is usual to define a harmonic oscillator as one
which is harmonic in the mechanical sense.

One effect of mechanical anharmonicity is to modify the ∆𝜐 = ±1 selection rule to
∆𝜐 = ±1, ±2,±3,… but the overtone transitions with ∆𝜐 = ±2,±3,… are usually
weak compared with those with ∆𝜐 = ±1.

However, unlike electrical anharmonicity, mechanical anharmonicity modifies the
vibrational term values and wave functions.

The harmonic oscillator term values are modified to a power series in 𝜐 +
1

2
:

𝐺 𝜐 = 𝜔𝑒 𝜐 +
1

2
− 𝜔𝑒𝑥𝑒 𝜐 +

1

2

2

+ 𝜔𝑒𝑦𝑒 𝜐 +
1

2

3

+⋯

where 𝜔𝑒 is the angular frequency of the classical oscillator. 
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The terms 𝜔𝑒𝑥𝑒, 𝜔𝑒𝑦𝑒, … are anharmonic constants and are written in this way because
sometimes the function 𝐺 𝜐 is expressed in the form:

𝐺 𝜐 = 𝜔𝑒 𝜐 +
1

2
− 𝑥𝑒 𝜐 +

1

2

2

+ 𝑦𝑒 𝜐 +
1

2

3

+⋯

The reason for the negative sign in the second term of the expansion is that the

constant 𝑥𝑒 has the same sign for all diatomic molecules and, when the negative

sign is included, 𝑥𝑒 is always positive. Further terms in the expansion may be

positive or negative.

The transition frequencies are given by:

𝜔 = 𝐺 𝜐 + 1 − 𝐺 𝜐 = 𝜔𝑒 − 2𝜔𝑒𝑥𝑒 𝜐 + 1 + 𝜔𝑒𝑦𝑒 3𝜐2 + 6𝜐 +
13

4

𝐺 𝜐 = 𝜔𝑒 𝜐 +
1

2
− 𝜔𝑒𝑥𝑒 𝜐 +

1

2

2

+𝜔𝑒𝑦𝑒 𝜐 +
1

2

3

+⋯
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If we consider only the first correction for the anarmonicity (𝑦𝑒 = 0):

𝜔 = 𝐺 𝜐 + 1 − 𝐺 𝜐 = 𝜔𝑒 − 2𝜔𝑒𝑥𝑒 𝜐 + 1
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3.4.1 P-, R- and Q-branch structures

Energy differences between rotational energy levels are smaller than differences

between vibrational levels, which in turn are smaller than differences in energy

between electronic levels.

Therefore, there is a stack of rotational energy levels associated
with each vibrational level.
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In rotational spectroscopy we observe transitions between rotational energy levels
associated with the same vibrational level (usually 𝜐 = 0 ).

In roto-vibrational spectroscopy, considering the selection rules ∆𝜐 = ±1 e ∆𝐽 = ±1,
transitions can occur between stacks of rotational energy levels associated with two
different vibrational levels.

When a molecule has both vibrational and rotational energy the total term values 𝑆

are given by the sum of the rotational term values 𝐹 𝐽 and the vibrational term

values 𝐺 𝑛 :

𝑆 = 𝐺 𝜐 + 𝐹 𝐽 = 𝜔𝑒 𝜐 +
1

2
− 𝜔𝑒𝑥𝑒 𝜐 +

1

2

2

+ 𝐵𝐽 𝐽 + 1 − 𝐷𝐽2 𝐽 + 1 2

The rotational part of the transition is subject to the same selection

rules as pure rotational transitions.

Therefore, in absorption (∆𝜐 = +1), you will have transitions

• ∆𝑱 = +𝟏 that will form the 𝑹− 𝒃𝒓𝒂𝒏𝒄𝒉

• ∆𝑱 = −𝟏 that will form the 𝑷 − 𝒃𝒓𝒂𝒏𝒄𝒉

3.4 ROTO-VIBRATIONAL SPECTROSCOPY
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Each transition of the 𝑹− 𝒃𝒓𝒂𝒏𝒄𝒉 is labelled 𝑅(𝐽ሻ while each transition
of 𝑷 − 𝒃𝒓𝒂𝒏𝒄𝒉 with 𝑃(𝐽ሻ, where 𝐽 represents the lowest state value.

3.4 ROTO-VIBRATIONAL SPECTROSCOPY
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If we neglect centrifugal distortion and second-order terms (𝑥𝑒~0), the angular
frequencies of the 𝑹− 𝒃𝒓𝒂𝒏𝒄𝒉 transitions (𝜈 = 1 → 𝜈 = 0) will be:

𝜔 𝑅(𝐽ሻ =
3

2
𝜔𝑒 + 𝐵 𝐽 + 1 𝐽 + 2 −

1

2
𝜔𝑒 − 𝐵𝐽 𝐽 + 1 = 𝜔𝑒 + 2𝐵(𝐽 + 1ሻ

where 𝜔𝑒 is the angular frequency of the pure vibrational transition.

Similarly, the angular frequencies of the 𝑷 − 𝒃𝒓𝒂𝒏𝒄𝒉 transitions (𝜈 = 1 → 𝜈 = 0) will be:

𝜔 𝑃(𝐽ሻ =
3

2
𝜔𝑒 + 𝐵𝐽 𝐽 − 1 −

1

2
𝜔𝑒 − 𝐵𝐽 𝐽 + 1 = 𝜔𝑒 − 2𝐵𝐽

It follows that the spacing between adjacent 𝑹− 𝒃𝒓𝒂𝒏𝒄𝒉 lines and also between

adjacent 𝑷 − 𝒃𝒓𝒂𝒏𝒄𝒉 lines is 2𝐵 :

𝑆 = 𝐺 𝜐 + 𝐹 𝐽 = 𝜔𝑒 𝜐 +
1

2
+ 𝐵𝐽 𝐽 + 1
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The spacing between the first 𝑷 − 𝒃𝒓𝒂𝒏𝒄𝒉 transition, 𝑃(1ሻ, and the first 𝑹−

𝒃𝒓𝒂𝒏𝒄𝒉 transition, 𝑅(0ሻ, is equal to:

𝜔 𝑅(0ሻ − 𝜔 𝑃 1 = 4𝐵

By measuring the central frequency 𝜔𝑒 it is possible to derive the

spring constant 𝑘 , while from the measurement of the separation

between two adjacent lines it is possible to determine the equilibrium

distance between the two atoms.

𝜔 𝑅(𝐽ሻ = 𝜔𝑒 + 2𝐵(𝐽 + 1ሻ

𝜔 𝑃(𝐽ሻ = 𝜔𝑒 − 2𝐵𝐽

3.4 ROTO-VIBRATIONAL SPECTROSCOPY
3.4.1 P-, R- and Q-branch structures
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The intensity distribution among rotational transitions in a vibration–rotation band is

governed principally by the Boltzmann distribution of population among the initial

states, giving:

𝑁𝐽
𝑁0

= (2𝐽 + 1ሻ𝑒−
ሻ𝐵ℏ𝐽(𝐽+1

𝐾𝑇

where 𝐽 represents the initial energy level of the transition. 

Ultimately, the P- and R-branches will appear as two bands:

𝑷 − 𝒃𝒓𝒂𝒏𝒄𝒉 𝑹 − 𝒃𝒓𝒂𝒏𝒄𝒉

3.4 ROTO-VIBRATIONAL SPECTROSCOPY
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Since transitions with ∆𝐽 = 0 are forbitten means that purely vibrational transitions are
not allowed.

If they were allowed, they would all be at the center of the gap between P- and R-
band.

The molecules that allow these transitions are those that have an electronic angular
momentum in the ground electronic state.

An example is nitric oxide (𝑁𝑂). 

The rotational selection rule for this molecule is:

∆𝐽 = 0,±1

and together with 𝑹 − and 𝑷 − 𝒃𝒓𝒂𝒏𝒄𝒉 we will have a very intense

and narrow branch that corresponds to the transitions ∆𝐽 = 0,

named as 𝑸− 𝒃𝒓𝒂𝒏𝒄𝒉

3.4 ROTO-VIBRATIONAL SPECTROSCOPY
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𝑷 − 𝒃𝒓𝒂𝒏𝒄𝒉

𝑹 − 𝒃𝒓𝒂𝒏𝒄𝒉

𝑸 − 𝒃𝒓𝒂𝒏𝒄𝒉

3.4 ROTO-VIBRATIONAL SPECTROSCOPY
3.4.1 P-, R- and Q-branch structures
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3.4.2 Branches asymmetry

The two bands are not quite symmetrical but shows a convergence in the R-branch and
a divergence in the P-branch. .

This asymmetry is mainly because the 𝐵 parameter depends on the frequency of the
vibrational level, so it is necessary to introduce 𝐵0 for all rotational levels of the
fundamental vibration band (𝜈 = 0) and 𝐵1 for all rotational levels of the first overtone
band (𝜈 = 1).

In the analysis of roto-vibrational spectra it is possible to separate the two contributions.

The method is known as the method of combination differences: differences in
wavenumber between transitions with a common upper state are dependent on
properties of the lower states only.

Similarly, differences in wavenumber between transitions with a common lower
state are dependent on properties of the upper states only.

For example, transitions 𝑅(0ሻ and 𝑃(2ሻ have a common upper state with
𝐽′ = 1, then 𝜔 𝑅(0ሻ − 𝜔 𝑃 2 must be a function of 𝐵1 only.

The same will be for transitions 𝑅(1ሻ and 𝑃(3ሻ.

3.4 ROTO-VIBRATIONAL SPECTROSCOPY
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Generalizing:

𝜔 𝑅(𝐽 − 1ሻ − 𝜔 𝑃 𝐽 + 1
= 𝜔𝑒 + 𝐵0𝐽 𝐽 + 1 − 𝐵1𝐽 𝐽 − 1 − 𝜔𝑒 + 𝐵0𝐽 𝐽 + 1 − 𝐵1 𝐽 + 1 𝐽 + 2

= 𝐵1 𝐽 + 1 𝐽 + 2 − 𝐵1𝐽 𝐽 − 1 = 4𝐵1 𝐽 +
1

2

Similarly, since all pairs of transitions 𝑅(𝐽ሻ and 𝑃(𝐽ሻ have common lower states,

𝜔 𝑅(𝐽ሻ − 𝜔 𝑃 𝐽 is a function of 𝐵0 only and we have:

𝜔 𝑅(𝐽ሻ − 𝜔 𝑃 𝐽
= 𝜔𝑒 + 𝐵0 𝐽 + 1 𝐽 + 2 − 𝐵1𝐽 𝐽 + 1 − 𝜔𝑒 + 𝐵0𝐽 𝐽 − 1 − 𝐵1𝐽 𝐽 + 1

= 𝐵0 𝐽 + 1 𝐽 + 2 − 𝐵0𝐽 𝐽 − 1 = 4𝐵0 𝐽 +
1

2

The band centre is not quite midway between 𝑅(0ሻ and 𝑃(1ሻ but its

wavenumber 𝜔𝑒 can be obtained from:

𝜔 𝑅(0ሻ = 𝜔𝑒 + 2𝐵0

𝜔 𝑃(1ሻ = 𝜔𝑒 − 2𝐵1

therefore: 𝜔𝑒 = 𝜔 𝑅(0ሻ − 2𝐵0 = 𝜔 𝑃 1 + 2𝐵1

3.4.2 Branches asymmetry
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3.5.1 Normal modes of vibration

Classically, we can think of the vibrational motions of a molecule as being those of a set

of balls representing the nuclei, of various masses, connected by Hooke’s law springs

representing the various forces acting between the nuclei. .

The stronger forces between the bonded O and H nuclei are represented by
strong springs which provide resistance to stretching the bonds.

The weaker force between the non-bonded hydrogen nuclei is
represented by a weaker spring which provides resistance to an
increase or decrease of the HOH angle.

This modelling for the H2O molecule is shown in the Figure:
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Even with this simple model it is clear that if one of the nuclei is given a sudden

displacement it is very likely that the whole molecule will undergo a very complicated

motion, a Lissajous motion, consisting of a mixture of angle-bending and bond-

stretching.

The Lissajous motion can always be broken down into a combination of the so-called
normal vibrations of the system which, in the Lissajous motion, are superimposed in
varying proportions..

A normal mode of vibration is one in which all the nuclei undergo
harmonic motion, have the same frequency of oscillation and move in
phase but generally with different amplitudes.

The form of the normal vibrations may be obtained from a knowledge

of the bond lengths and angles and of the bond-stretching and angle-

bending force constants, which are a measure of the strengths of the

various springs in the ball-and-spring model.

3.5 POLYATOMIC MOLECULES
3.5.1 Normal modes of vibration
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By the absorption of a photon, let’s suppose to excite a vibration of the molecule
represented in the Figure, assuming a displacement only for the atom 1, that is, Ԧ𝑟1 ≠ 0
only.

The origin point of the reference frame is in the
equilibrium position of the atom 1.

For small displacements, the force 𝐹1 acting upon the atom 1 

will be:

𝐹𝑥
1 = −𝑘𝑥𝑥

11𝑥1 − 𝑘𝑥𝑦
11𝑦1 − 𝑘𝑥𝑧

11𝑧1

𝐹𝑦
1 = −𝑘𝑦𝑥

11𝑥1 − 𝑘𝑦𝑦
11𝑦1 − 𝑘𝑦𝑧

11𝑧1

𝐹𝑧
1 = −𝑘𝑧𝑥

11𝑥1 − 𝑘𝑧𝑦
11𝑦1 − 𝑘𝑧𝑧

11𝑧1

In a more compact form:

𝐹𝛼
1 = −

𝛽=1

3

𝑘𝛼𝛽
11 𝑥𝛽

1

3.5 POLYATOMIC MOLECULES
3.5.1 Normal modes of vibration
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𝐹𝛼
1 = −

𝛽=1

3

𝑘𝛼𝛽
11 𝑥𝛽

1

where 𝑥𝛽
1 = 𝑥1, 𝑦1, 𝑧1 and 𝑘𝛼𝛽

11 is the stiffness tensor relative to the component 𝛼 of the

elastic force acting upon the atom 1 caused by a displacement along the direction 𝛽.

Including the case of the other two atoms (2 e 3), a homogeneous system with a 9×9

coefficient matrix is obtained

൞
𝐹𝑥
1 = −𝑘𝑥𝑥

11𝑥1 . . . −𝑘𝑥𝑥
12𝑥2 . . . −𝑘𝑥𝑧

13𝑧3
…………………………………………… . .
𝐹𝑧
3 = −𝑘𝑧𝑥

31𝑥1 . . . −𝑘𝑧𝑥
32𝑥2 . . . −𝑘𝑧𝑧

13𝑧3

For 𝑁 atoms, it can be written compactly:

𝐹𝛼
𝑖 = −

𝛽=1

3



𝑗=1

𝑁

𝑘𝛼𝛽
𝑖𝑗
𝑥𝛽
𝑗

with 𝑖, 𝑗 = 1,… , 𝑁 and 𝛼, 𝛽 = 1,2,3

3.5 POLYATOMIC MOLECULES
3.5.1 Normal modes of vibration
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The question now is: are there any solutions resulting in 𝑁 atoms that vibrate all at the

same frequency 𝜔? In other words, we want to determine the normal modes of

vibration such that, if 𝑚𝑗 is the mass of the 𝑗-th atom, must result:

൞
𝐹𝑥
1 = −𝜔2𝑚1𝑥1

………………… . .
𝐹𝑧
𝑁 = −𝜔2𝑚𝑁𝑧𝑁

that can be rewritten as:

𝐹𝛼
𝑖 = −𝜔2 

𝛽=1

3



𝑗=1

𝑁

𝑚𝑗𝑥𝛽
𝑗
𝛿𝛼𝛽𝛿𝑖𝑗

If the two expressions are imposed to 

be equal:



𝛽=1

3



𝑗=1

𝑁

𝑘𝛼𝛽
11 − 𝜔2𝑚𝑗𝛿𝛼𝛽𝛿𝑖𝑗 𝑥𝛽

𝑗
= 0

𝐹𝛼
𝑖 = −

𝛽=1

3



𝑗=1

𝑁

𝑘𝛼𝛽
𝑖𝑗
𝑥𝛽
𝑗

3.5 POLYATOMIC MOLECULES
3.5.1 Normal modes of vibration
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which has non-trivial solutions if and only if the determinant of the 3𝑁 × 3𝑁 matrix

coefficient is equal to zero:

𝑘𝑥𝑥
11 −𝜔2𝑚1 𝑘𝑥𝑦

11 … 𝑘𝑧𝑧
1𝑁

… … … …
… … … …
𝑘𝑥𝑥
1𝑁 𝑘𝑥𝑦

1𝑁 … 𝑘𝑧𝑧
𝑁𝑁 −𝜔2𝑚𝑁

= 0

This equation has 3𝑁 roots 𝜔1…𝜔3𝑁 representing the normal modes of the molecule.

Some of these roots are always null:

• 6 roots in a generic molecule (3 translations of the center of mass and 3 rotations)

• 5 roots in a linear molecule (the rotation around the axis with a moment of inertia

𝐼 = 0 is "frozen").

Ultimately, a molecule has:

• 𝟑𝑵− 𝟓 normal modes of vibration if it is linear

• 𝟑𝑵− 𝟔 normal modes of vibration if it is non-linear

3.5 POLYATOMIC MOLECULES
3.5.1 Normal modes of vibration
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3.5.2 Group vibrations

In an approximation which is analogous to that which we have used for a diatomic

molecule, each of the vibrations of a polyatomic molecule can be regarded as harmonic.

Quantum mechanical treatment in the harmonic oscillator approximation shows that the
vibrational term values 𝐺(𝜐𝑖ሻ associated with each normal vibration 𝑖, all taken to be
nondegenerate, are given by:

𝐺 𝜐𝑖 = 𝜔𝑖 𝜐𝑖 +
1

2

where 𝜔𝑖 is the classical vibration wavenumber and 𝜐𝑖 the vibrational quantum
number which can take the values 0; 1; 2; 3; . . . .

In general, for vibrations with a degree of degeneracy 𝑑𝑖 , the previous

expression becomes:

𝐺 𝜐𝑖 = 𝜔𝑖 𝜐𝑖 +
𝑑𝑖
2

3.5 POLYATOMIC MOLECULES
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As for a diatomic molecule, the general harmonic oscillator selection rule for infrared

vibrational transitions is:

Δ𝜐𝑖 = ±1

for each vibration, with Δ𝜐𝑖 = ±2,±3 overtone transitions allowed, but generally weak,
when account is taken of anharmonicity.

In addition there is the possibility of

combination tones involving

transitions to vibrationally excited

states in which more than one

normal vibration is excited.

Fundamental, overtone
and combination tone
transitions involving two
vibrations 𝜐𝑖 and 𝜐𝑗 are

illustrated in Figure.

vibration 𝜐𝑖 vibration 𝜐𝑗

fond

1° overt

2° overt

fond

1° overt

2° overt

combination 
tone 𝜐𝑖 + 𝜐𝑗

3.5.2 Group vibrations

3.5 POLYATOMIC MOLECULES
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For vibrational transitions to be allowed in the infrared spectrum there is an additional
requirement that there must be an accompanying change of dipole moment.

These requirements necessitate further selection rules which depend on the symmetry
properties of the molecule concerned.

However, their intensities depend on the magnitudes of the change of dipole moment :
these may be so small for some vibrations that, although the transitions are allowed,
they are too weak to be observed.

Although, in general, a normal mode of vibration involves movement of all the
atoms in a molecule there are circumstances in which movement is more or less
localized in a part of the molecule.

For example, if the vibration involves the stretching or bending of a
terminal 𝑋 − 𝑌 group, where 𝑋 is heavy compared with 𝑌 , the
corresponding vibration wavenumbers are almost independent of the
rest of the molecule to which 𝑋 − 𝑌 is attached.

3.5.2 Group vibrations

3.5 POLYATOMIC MOLECULES
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For example,, In ethyl alcohol CH3CH2OH the motions
of the hydrogen atom of the OH group are
approximately those that it would have if it were
attached to an infinite mass by a bond whose force
constants are typical of an OH bond.

For this reason, we speak of a typical wavenumber of an OH-stretching vibration,
for which the symbol 𝜐(𝑂𝐻ሻ is used, which can vary from 3590 to 3650 cm-1.

Such a typical wavenumber is called a group wavenumber or, incorrectly, but
commonly, a group frequency.

Another group wavenumber of the OH group is the bending, or

deformation, vibration which is typically in the 1050 cm-1 to 1200 cm-1

range.

The wavenumber range is small and reflects the relatively slight dependence on
the part of the molecule in the immediate neighborhood of the group.

3.5.2 Group vibrations

3.5 POLYATOMIC MOLECULES
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Other general circumstances in which normal vibrations tend to be localized in a

particular group of atoms arise when there is a chain of atoms in which the force constant

between two of them is very different from those between other atoms in the chain.

For example, in the molecule 𝐻𝐶 ≡ 𝐶 − 𝐶𝐻 = 𝐶𝐻2 the force constants in the 𝐶 − 𝐶,
𝐶 = 𝐶 e 𝐶 ≡ 𝐶 bonds are quite dissimilar.

It follows that the stretchings of the bonds are not strongly coupled and that each
stretching vibration wavenumber is typical of the 𝐶 − 𝐶, 𝐶 = 𝐶 e 𝐶 ≡ 𝐶 group.

Not all parts of a molecule are characterized by group vibrations. Many normal

modes involve strong coupling between stretching or bending motions of atoms in

a straight chain, a branched chain or a ring. .

Such vibrations are called skeletal vibrations and tend to be specific to a
particular molecule.

For this reason, the region where skeletal vibrations mostly occur,
from about 1300 cm-1 to low wavenumber, is sometimes called the
fingerprint region.

3.5.2 Group vibrations

3.5 POLYATOMIC MOLECULES
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Skeletal vibrations

3.5.2 Group vibrations

3.5 POLYATOMIC MOLECULES

ROTO-

VIBRATIONAL 

SPECTROSCOPY



73

In the infrared spectrum the intensity of absorption due to a particular vibration depends

on the change of dipole moment during the vibration, similar to that for a diatomic

molecule.

For example, the stretching vibration of the strongly polar 𝐶 = 𝑂 bond gives a strong
absorption band, whereas that of the 𝐶 = 𝐶 bond gives a weak band.

Indeed, if the 𝐶 = 𝐶 bond is in a symmetrical molecule such as 𝐻2𝐶 = 𝐶𝐻2 there
is no change of dipole moment at all and the vibration is infrared inactive.

If the 𝐶 = 𝐶 bond is in, say, 𝐻𝐹𝐶 = 𝐶𝐻2, there is a small change of dipole
moment due to stretching of the bond but clearly not as large a change as that
due to stretching of the 𝐶 − 𝐹 bond.

Just as group vibration wavenumbers are fairly constant from one molecule to
another, so are their intensities.

For example, if a molecule were being tested for the presence of a 𝐶 −
𝐹, bond there must be not only an infrared absorption band due to
bond-stretching at about 1100 cm cm-1, but also it must be intense.

3.5.2 Group vibrations

3.5 POLYATOMIC MOLECULES
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https://hitran.org/

https://spectra.iao.ru/
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R(0)

R(1)

R(2)

R(3)

R(4)

R(5)

R(6) R(7)

R(8)

R(9)

R(10)

R(11)

R(12)

R(13)

R(14)

R(15)

P(1)

P(2)

P(3)

P(4)

P(5)

P(6)
P(7)

P(8)

P(9)

P(10)

P(11)

P(12)

P(13)

P(14)

P(15)

P(16)
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𝜔 = 2𝜋𝜐

The angular frequency 𝜔 is related to the frequency 𝜐

which in turn is related to the wavelength 𝜆 and the wavenumber 𝑣:

𝜐 =
𝑐

𝜆
= 𝑐 𝑣

where 𝑐 is the speed of light.

We determine the rotational constant 𝐵.

Apply the method of combination differences: differences in wavenumber between
transitions with a common upper state are dependent on properties of the lower states
only.

Similarly, differences in wavenumber between transitions with a common lower
state are dependent on properties of the upper states only.

𝜔 𝑅(𝐽 − 1ሻ − 𝜔 𝑃 𝐽 + 1 = 4𝐵1 𝐽 +
1

2

𝜔 𝑅(𝐽ሻ − 𝜔 𝑃 𝐽 = 4𝐵0 𝐽 +
1

2
First wee need to convert the wavenumbers to angular frequency because 𝐵0 and 𝐵1
were defined in units of angular frequency.

3.7 EXAMPLE: FUNDAMENTAL BAND OF CO
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𝜔 = 2𝜋𝑐 𝑣

Since 𝑣 is in [cm-1], 𝑐 = 0.03 𝑇𝐻𝑧 ∙ 𝑐𝑚

Then merging both expressions:

Linea 𝒗 (cm-1) 𝝎 (THz)

R(0) 2147,08 404,510

R(1) 2150,86 405,222

R(2) 2154,59 405,925

R(3) 2158,3 406,624

R(4) 2161,97 407,315

R(5) 2165,6 407,999

R(6) 2169,2 408,677

R(7) 2172,76 409,348

R(8) 2176,28 410,011

R(9) 2179,77 410,669

R(10) 2183,22 411,319

R(11) 2186,64 411,963

R(12) 2190,02 412,600

R(13) 2193,36 413,229

R(14) 2196,66 413,851

R(15) 2199,93 414,467

Linea 𝐯 (cm-1) 𝛚 (THz)

P(1) 2139,43 403,069

P(2) 2135,55 402,338

P(3) 2131,63 401,599

P(4) 2127,68 400,855

P(5) 2123,79 400,122

P(6) 2119,68 399,348

P(7) 2115,63 398,585

P(8) 2111,54 397,814

P(9) 2107,42 397,038

P(10) 2103,27 396,256

P(11) 2099,08 395,467

P(12) 2094,86 394,672

P(13) 2090,61 393,871

P(14) 2086,32 393,063

P(15) 2082 392,249

P(16) 2077,65 391,429

3.7 EXAMPLE: FUNDAMENTAL BAND OF CO
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Determine 𝐵0 : 𝜔 𝑅(𝐽ሻ − 𝜔 𝑃 𝐽 = 4𝐵0 𝐽 +
1

2

J

1 R(1)-P(1) 2,153

2 R(2)-P(2) 3,587

3 R(3)-P(3) 5,025

4 R(4)-P(4) 6,460

5 R(5)-P(5) 7,877

6 R(6)-P(6) 9,330

7 R(7)-P(7) 10,763

8 R(8)-P(8) 12,197

9 R(9)-P(9) 13,631

10 R(10)-P(10) 15,063

11 R(11)-P(11) 16,496

12 R(12)-P(12) 17,928

13 R(13)-P(13) 19,358

14 R(14)-P(14) 20,788

15 R(15)-P(15) 22,218
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𝑦 = 1.4335𝑥 + 0,0066

𝐵0 = 0.358 𝑇𝐻𝑧
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Determine 𝐵1 :

J

1 R(0)-P(2) 2,172

2 R(1)-P(3) 3,623

3 R(2)-P(4) 5,070

4 R(3)-P(5) 6,502

5 R(4)-P(6) 7,967

6 R(5)-P(7) 9,414

7 R(6)-P(8) 10,863

8 R(7)-P(9) 12,310

9 R(8)-P(10) 13,755

10 R(9)-P(11) 15,202

11 R(10)-P(12) 16,647

12 R(11)-P(13) 18,092

13 R(12)-P(14) 19,537

14 R(13)-P(15) 20,980

0 4 8 12 16
0

5

10

15

20

25

 

 

 
𝜔
𝑅
(𝐽
−
1
ሻ

−
𝜔
𝑃
𝐽
+
1

𝐽 +
1

2

𝑦 = 1.4471𝑥 + 0,0045
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with 𝑢 = 1.66 ∙ 10−27 kg unified atomic mass unit

𝐵 =
ℎ

4𝜋𝐼
=

ℎ

4𝜋𝜇𝑟2

𝜇 =
𝑚C𝑚O

𝑚C +𝑚O

Knowing that: 𝑚C = 12𝑢 is the mass of the carbon atom 

𝑚O = 16𝑢 is the mass of the oxygen atom

The reduced mass will be:

𝜇 =
𝑚C𝑚O

𝑚C +𝑚O
=
12 ∙ 16𝑢2

28𝑢
= 6.86 𝑢

Once the rotational constant is known, we can determine the length of the

bond 𝐶 − 𝑂. The rotational constant 𝐵 is defined as:

where the reduced mass 𝜇 is defined as:
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Ultimately we can determine the length of the bond 𝐶 − 𝑂 by using the expression

𝐵0,1[𝐻𝑧] =
ℎ[𝑱∙𝒔]

4𝜋𝜇 𝒌𝒈 𝑟2[𝒎𝟐]
, with ℎ = 6,626 ∙ 10−34 𝐽 ∙ 𝑠:

𝑟 =
ℎ

4𝜋𝜇𝐵0,1

Using 𝐵0 = 0.358 𝑇𝐻𝑧:

𝑟0 =
ℎ

4𝜋𝜇𝐵0,1
=

6,626 ∙ 10−34 𝐽 ∙ 𝑠

4 ∙ 3.14 ∙ 6.86 ∙ 1.66 ∙ 10−27 kg ∙ 0.358 ∙ 1012𝐻𝑧
= 113.72 𝑝𝑚

Using 𝐵1 = 0.362 𝑇𝐻𝑧:

𝑟1 =
ℎ

4𝜋𝜇𝐵0,1
=

6,626 ∙ 10−34 𝐽 ∙ 𝑠

4 ∙ 3.14 ∙ 6.86 ∙ 1.66 ∙ 10−27 kg ∙ 0.358 ∙ 1012𝐻𝑧

= 113.18 𝑝𝑚
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We can now determine the classical frequency of vibration:

𝜔𝑒 = 𝜔 𝑅(0ሻ − 2𝐵0 = 𝜔 𝑃 1 + 2𝐵1

Replacing:

𝜔𝑒,0 = 𝜔 𝑅(0ሻ − 2𝐵0 = 404,510 𝑇𝐻𝑧 − 0.716 𝑇𝐻𝑧 = 403,794 𝑇𝐻𝑧

𝜔𝑒,1 = 𝜔 𝑃(1ሻ + 2𝐵1 = 403,069 𝑇𝐻𝑧 + 0.724 𝑇𝐻𝑧 = 403,793 𝑇𝐻𝑧

Note the classical frequency of vibration, we can determine the spring constant 𝑘 :

𝑘 = 𝜔𝑒
2𝜇

Substituting the obtained values:

𝑘 = 403.792 ∙ 1024𝐻𝑧 ∙ 6.86 ∙ 1.66 ∙ 10−27 kg = 1.855.96
𝑁

𝑚
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