
CHAPTER 4

SPECTROSCOPIC INSTRUMENTATION



4.1 SPECTROGRAPHS AND MONOCHROMATORS

2

SPECTROSCOPIC 

INSTRUMENTATION

Spectrographs are optical instruments that form an image 𝑆2(𝜆) of the entrance slit 𝑆1; 

images are laterally separated for different wavelengths 𝜆 of the incident radiation. This

lateral dispersion is due to either spectral dispersion in a prism or to diffraction on plane or 

reflection gratings. 

The light source L illuminates the entrance slit 𝑆1, which is placed in the focal plane of

the collimator lens 𝐿1. Behind 𝐿1 the parallel light beam passes through the prism 𝑃,

where is diffracted by an angle 𝜃(𝜆) depending on the wavelength 𝜆. The lens 𝐿2
form an image 𝑆2(𝜆) of the entrance slit 𝑆1.

The position 𝑥(𝜆) of the image in the focal plane of 𝐿2 is a function of the

wavelength 𝜆. The linear dispersion 𝑑𝑥/𝑑𝜆 of the spectrograph depends on

spectral dispersion 𝑑𝑛/𝑑𝜆 of the prism material and on the focal length 𝐿2.

Prism spectrograph
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When a reflecting diffraction grating is used to separate the spectral lines 𝑆2(𝜆), the two

lenses 𝐿1 and 𝐿2 are commonly replaced by two spherical mirrors 𝑀1 and 𝑀2, which

image the entrance slit onto the plane of observation.

Grating spectrograph

In spectrographs a charge-coupled device (CCD) diode array is placed in
the focal plane of 𝐿2 or 𝑀2. The whole spectral range Δ𝜆 = 𝜆1 𝑥1 −
𝜆2 𝑥2 covered by the lateral extension Δ𝑥 = 𝑥1 − 𝑥2 of the diode array
can be recorded simultaneously. The spectral range is limited by the
spectral sensitivity of available CCD materials.

Both systems can use either photographic or photoelectric recording. According to
the kind of detection, we distinguish between spectrographs and
monochromators.

4.1 SPECTROGRAPHS AND MONOCHROMATORS
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• Monochromators, on the other hand, use photoelectric recording of a selected small
spectral interval.

• The exit slit 𝑆2 selecting an interval Δ𝑥2 in the focal plane B lets only the limited range
Δ𝜆 through to the photoelectric detector.

• Different spectral ranges can be detected by shifting 𝑆2 along the lateral direction 𝑥.
• A more convenient solution turns the prism or grating by a gear-box drive, which

allows the different spectral regions to be tuned across the fixed exit slit.

• Unlike the spectrograph, different spectral regions are not detected simulta-
• simultaneously but successively.
• The signal received by the detector is proportional to the product of the area

ℎΔ𝑥2 of the exit slit with height ℎ with spectral intensity  𝐼 𝜆 𝑑𝜆, where the

integration extends over the spectral range dispersed within the width Δ𝑥2 of 𝑆2.

• In the literature, the term spectrometer is often used to refer to
both instruments.

The selection of the optimum type of spectrometer for a particular
experiment is guided by some basic characteristics of spectrometers
and their relevance to the particular application .

4.1 SPECTROGRAPHS AND MONOCHROMATORS
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4.1.1 Speed of a spectrometer

When the spectral intensity 𝐼𝜆
∗ within the solid angle 𝑑Ω = 1 𝑠𝑟 is incident on the

entrance slit of area 𝐴, a spectrometer with an acceptance angle Ω transmits the

radiant flux within the spectral interval 𝑑𝜆 :

𝜙𝜆𝑑𝜆 = 𝐼𝜆
∗ 𝐴

𝐴𝑠
𝑇 𝜆 Ω𝑑𝜆

where 𝐴𝑠 ≥ 𝐴 is the area of the source image at the entrance slit and 𝑇(𝜆) the

transmission of the spectrometer.

The product 𝑈 = 𝐴Ω is often named étendue. For the prism

spectrograph the maximum solid angle of acceptance is limited by the

effective area of the prisms; For the grating spectrometer the sizes of

the grating and mirrors limit the acceptance solid angle Ω.
SPECTROSCOPIC 
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In order to utilize the optimum speed, it is advantageous to image the light source onto

the entrance slit in such a way that the acceptance angle Ω is fully used .

Optimized imaging of a light source

onto the entrance slit of a

spectrometer is achieved when the

solid angle 𝛺′ of the incoming light

matches the acceptance angle 𝛺 =

𝑎

𝑑

2
of the spectrometer

Although more radiant power from an extended source can pass

the entrance slit by using a converging lens to reduce the source

image on the entrance slit, the divergence is increased. The

radiation outside the acceptance angle Ω cannot be detected, but

may increase the background by scattering from lens holders and

spectrometer walls. .SPECTROSCOPIC 

INSTRUMENTATION

4.1 SPECTROGRAPHS AND MONOCHROMATORS
4.1.1 Speed of a spectrometer
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4.1.2 Spectral transmission

For prism spectrometers, the spectral transmission depends on the material of the prism

and the lenses.

Using fused quartz, the accessible spectral range spans from about 180 to 3000 nm.

Below 180nm (vacuum-ultraviolet region), the whole spectrograph must be evacuated,

and lithium fluoride or calcium fluoride must be used for the prism and the lenses,

although most VUV spectrometers are equipped with reflection gratings and mirrors.

SPECTROSCOPIC 
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However, because of the high reflectivity of metallic

coated mirrors and gratings in the infrared region,

grating spectrometers with mirrors are preferred over

prism spectrographs.

Many vibrational-rotational transitions of molecules

such as H2O or CO2 fall within the range 3—10 μm,

causing selective absorption of the transmitted

radiation. .

Infrared spectrometers therefore have to be either

evacuated or filled with dry nitrogen.

In the infrared region, several materials (for example, 
CaF2, NaCl, and KBr crystals) are transparent up to 30 
μm. 

4.1.2 Spectral transmission
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4.1.3 Spectral resolving power

The spectral resolving power of any dispersing instrument is defined by the expression:

𝑅 =
𝜆

Δ𝜆
=

𝜐

Δ𝜐

where Δ𝜆 = 𝜆1 − 𝜆2 stands for the minimum separation of the central wavelengths of
two 𝜆1 e 𝜆2 of two closely spaced lines that are considered to be just resolved.

What is meant by resolved?
An intensity distribution composed of two lines with the intensity profiles 𝐼1(𝜆 − 𝜆1) and
𝐼2(𝜆 − 𝜆2) can be recognize if the total intensity 𝐼(𝜆) = 𝐼1 𝜆 − 𝜆1 + 𝐼2(𝜆 − 𝜆2) shows a
pronounced dip between two maxima.

SPECTROSCOPIC 
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4.1 SPECTROGRAPHS AND MONOCHROMATORS
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The intensity distribution 𝐼(𝜆) depends on the ratio 𝐼1/𝐼2 and on the profiles of both

components. Therefore, the minimum resolvable interval Δ𝜆 will differ for different

profiles.

Let us consider the attainable spectral resolving power of a spectrometer.

When passing the dispersing element (prism or grating), a parallel beam

composed of two monochromatic waves with wavelengths 𝜆 and 𝜆 + Δ𝜆 is

split into two partial beams with the angular deviations 𝜃 and 𝜃 + Δ𝜃 from

their initial direction. The angular separation is:

Δ𝜃 =
𝑑𝜃

𝑑𝜆
Δ𝜆

where
𝑑𝜃

𝑑𝜆
is called the angular dispersion [rad/nm].

Lord Rayleigh introduced a criterion of resolution for diffraction-limited line profiles,

where two lines are considered to be just resolved if the central diffraction maximum

of the profile 𝑰𝟏(𝝀 − 𝝀𝟏) coincides with the first minimum of 𝑰𝟐(𝝀 − 𝝀𝟐).

4.1.3 Spectral resolving power

SPECTROSCOPIC 
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Since the camera lens with focal length 𝑓2 images the entrance slit 𝑆1into the
plane B, the distance Δ𝑥2 between the two images 𝑆2(𝜆) and 𝑆2(𝜆 + Δ𝜆) is:

Δ𝑥2 = 𝑓2Δ𝜃 = 𝑓2
𝑑𝜃

𝑑𝜆
Δ𝜆 =

𝑑𝑥

𝑑𝜆
Δ𝜆

The factor
𝑑𝑥

𝑑𝜆
is called the linear dispersion of the instrument [mm/nm]. 

4.1.3 Spectral resolving power
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In order to resolve two lines at 𝜆 and 𝜆 + Δ𝜆, the separation Δ𝑥2 has to be at least the
sum 𝛿𝑥2 𝜆 + 𝛿𝑥2 𝜆 + Δ𝜆 /2 of the widths of the two slit images.
Since the width 𝛿𝑥2 is related to the width 𝛿𝑥1 of the entrance slit according to
geometrical optics by:

𝛿𝑥2 =
𝑓2
𝑓1
𝛿𝑥1

the resolving power 𝜆/Δ𝜆 can be increased by decreasing 𝛿𝑥1.

The intensity distribution 𝐼(𝜙) as a function of the angle 𝜙 with the

optical axis of the system is given by the well-known formula :

𝐼 𝜙 = 𝐼0

𝑠𝑒𝑛
𝑎𝜋𝑠𝑒𝑛𝜙

𝜆
𝑎𝜋𝑠𝑒𝑛𝜙

𝜆

2

≃ 𝐼0

𝑠𝑒𝑛
𝑎𝜋𝜙
𝜆

𝑎𝜋𝜙
𝜆

2

Unfortunately, there is a theoretical limitation set by diffraction. Because of the
fundamental. When a parallel light beam passes a limiting aperture with diameter 𝑎, a
Fraunhofer diffraction pattern is produced in the plane of the focusing 𝐿2 lens.

𝛿𝑥2

4.1.3 Spectral resolving power
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The first two diffraction minima at 𝜙 = ±
𝜆

𝑎
≪ 𝜋 are symmetrical to the central

maximum (zeroth diffraction order) at 𝜙 = 0. The central maximum contains about

90% of the total intensity. .

δ𝑥2
𝑑𝑖𝑓𝑓𝑟 = 𝑓2

𝜆

𝑎

defined as the distance between the central diffraction maximum
and the first minimum, which is approximately equal to the FWHM
of the central maximum.

Even an infinitesimally small entrance slit therefore produces a slit image of

width :

4.1.3 Spectral resolving power

SPECTROSCOPIC 
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According to the Rayleigh criterion, two equally intense spectral lines with wavelengths
𝜆 and 𝜆 + Δ𝜆 are just resolved if the central diffraction maximum of 𝑆2(𝜆) coincides
with the first minimum of 𝑆2(𝜆 + Δ𝜆).

Combining this expression with Δ𝑥2 = 𝑓2
𝑑𝜃

𝑑𝜆
Δ𝜆 , the fundamental limit on the

resolving power is determined:

𝜆

Δ𝜆
≤ 𝑎

𝑑𝜃

𝑑𝜆

which clearly depends only on the size 𝑎 of the limiting aperture
and on the angular dispersion of the instrument.

This means that their maxima are just separated by δ𝑥2
𝑑𝑖𝑓𝑓𝑟 = Δ𝑥2 = 𝑓2

𝜆

𝑎
.

4.1.3 Spectral resolving power
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For a finite entrance slit with width 𝑏, the separation Δ𝑥2 between the central peaks of 

the two images 𝐼1(𝜆 − 𝜆1) and 𝐼2(𝜆 − 𝜆2) must be:

Δ𝑥2 ≥ 𝑓2
𝜆

𝑎
+ 𝑏

𝑓2
𝑓1

in order to meet the Rayleigh criterion.

Intensity profiles of two
monochromatic lines
measured in the focal plane
of 𝐿2 with an entrance slit
width 𝑏 ≫ 𝑓1𝜆/𝑎 and a
magnification factor 𝑓2/𝑓1 of
the spectrograph.
Solid line: without diffraction; 
Dashed line: with diffraction.

4.1.3 Spectral resolving power
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With Δ𝑥2 = 𝑓2
𝑑𝜃

𝑑𝜆
Δ𝜆, the smallest resolvable wavelength interval:

Δ𝜆 ≥
𝜆

𝑎
+
𝑏

𝑓1

𝑑𝜃

𝑑𝜆

−1

Although it does not influence the spectral

resolution, the much larger diffraction by

the entrance slit imposes a limitation on the

transmitted intensity at small slit widths.

Diffraction by the entrance slit

4.1.3 Spectral resolving power

SPECTROSCOPIC 
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This can be seen as follows:
when illuminated with parallel
light, the entrance slit with
width 𝑏 produces a Fraunhofer
diffraction pattern analogous
with 𝑎 replaced by 𝑏.
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The central diffraction maximum extends between angles𝛿𝜙 = ±
𝜆

𝑏
and can completely

pass the limiting aperture 𝑎 only if 2𝛿𝜙 is smaller than the acceptance angle
𝑎

𝑓1
of the

spectrometer. This imposes a lower limit to the useful width 𝑏𝑚𝑖𝑛 of the entrance slit:

𝑏𝑚𝑖𝑛 ≥ 2𝜆
𝑓1
𝑎

Replacing 𝑏 = 𝑏𝑚𝑖𝑛 = 2𝜆
𝑓1

𝑎
in Δ𝜆 ≥

𝜆

𝑎
+

𝑏

𝑓1

𝑑𝜃

𝑑𝜆

−1
yields the practical limit for Δ𝜆

imposed by diffraction by 𝑆1 and by the limiting aperture with width 𝑎:

Δ𝜆 = 3𝑓
𝜆

𝑎

𝑑𝜆

𝑑𝑥

Instead of the theoretical limit
𝜆

Δ𝜆
≤ 𝑎

𝑑𝜃

𝑑𝜆
given by the diffraction through

the aperture 𝑎, a smaller practically attainable resolving power is obtained

from the last expression which takes into account a finite minimum

entrance slit width 𝑏𝑚𝑖𝑛 imposed by intensity considerations and which

yields: :

𝑅 =
𝜆

Δ𝜆
=
𝑎

3

𝑑𝜃

𝑑𝜆

4.1.3 Spectral resolving power
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4.1.4 Free Spectral Range

Two spectral lines with wavelengths 𝜆1and 𝜆2 = 𝜆1 ± 𝛿𝜆 cannot be distinguished

without further information. This means that the wavelength 𝜆 measured by the

instrument must be known beforehand with an uncertainty Δ𝜆 < 𝛿𝜆.

While for prism spectrometers the free spectral range covers the
whole region of normal dispersion of the prism material, for grating
spectrometers 𝛿𝜆 is determined by the diffraction order 𝑚 and
decreases with increasing 𝑚.
Interferometers, which are generally used in very high orders (𝑚 =
104 − 108), have a high spectral resolution but a small free spectral
range 𝛿𝜆.
For unambiguous wavelength determination they need a
preselector, which allows one to measure the wavelength within 𝛿𝜆
of the high-resolution instrument.

The free spectral range of a spectrometer is the wavelength interval 𝛿𝜆 of the

incident radiation for which a one-valued relation exists between 𝜆 and the position

𝑥(𝜆) of the entrance slit image.

SPECTROSCOPIC 
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In a grating spectrometer the collimating lens 𝐿1 is replaced by a spherical mirror 𝑀1

with the entrance slit 𝑆1 in the focal plane of 𝑀1.

The collimated parallel light is reflected by 𝑀1 onto a reflection grating consisting of

many straight grooves (about 105) parallel to the entrance slit. The grooves have been

ruled onto an optically smooth glass substrate or have been produced by holographic

techniques.

The whole grating surface is coated with a highly reflecting layer (metal or dielectric

film). The light reflected from the grating is focused by the spherical mirror 𝑀2 onto the

exit 𝑆2 or onto a photographic plate in the focal plane of 𝑀2.
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The many grooves, which are illuminated coherently, can be regarded as small radiation

sources, each of them diffracting the light incident onto this small groove with a width

𝑑 ≈ 𝜆 into a large range Δ𝑟 ≈
𝜆

𝑑
of angles 𝑟 around the direction of geometrical

reflection .

The total reflected light consists of a coherent superposition of these

many partial contributions. Only in those directions where all partial

waves emitted from the different grooves are in phase will

constructive interference result in a large total intensity, while in all

other directions the different contributions cancel by destructive

interference.

4.2 GRATING SPECTROMETER
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Consider a parallel light beam incident onto two adjacent grooves.

At an angle of incidence 𝛼 to the grating normal (which is normal to

the grating surface, but not necessarily to the grooves) one obtains

constructive interference for those directions 𝛽 of the reflected light for

which the path difference Δ𝑠 = Δ𝑠1 − Δ𝑠2 is an integer multiple 𝑚 of the

wavelength 𝜆. This yields the grating equation:

𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽 = 𝑚𝜆

4.2 GRATING SPECTROMETER
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the plus sign has to be taken if 𝛽 and 𝛼 are on the same side of the grating normal;

otherwise the minus sign.

The reflectivity 𝑅(𝛽, 𝜃) of a ruled grating depends on the diffraction angle 𝛽 and and

on the blaze angle 𝜃 of the grating, which is the angle between the groove normal

and the grating normal:

4.2 GRATING SPECTROMETER

SPECTROSCOPIC 

INSTRUMENTATION



23

If the diffraction angle 𝛽 coincides with the angle 𝑟 of specular reflection from the
groove surfaces, 𝑅(𝛽, 𝜃) reaches its optimum value 𝑅0 , which depends on the
reflectivity of the groove coating.

One infers for the case where 𝛼 and 𝛽 are on opposite sides of the grating

normal, 𝑖 = 𝛼 − 𝜃 e 𝑟 = 𝜃 + 𝛽, which yields, for specular reflection 𝑖 = 𝑟,

the condition for the optimum blaze angle 𝜃:

𝜃 =
𝛼 − 𝛽

2

4.2 GRATING SPECTROMETER
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Because of the diffraction of each partial wave into a large angular range, the reflectivity

𝑅(𝛽) will not have a sharp maximum at 𝛽 = 𝛼 − 2𝜃, but will rather show a broad

distribution around this optimum angle.

The angle of incidence 𝛼 is determined by the particular construction of the

spectrometer, while the angle 𝛽 for which constructive interference occurs depends on

the wavelength 𝜆.

Therefore, the blaze angle 𝜃 has to be specified for the desired spectral range and the

spectrometer type.

In Iaser-spectroscopic applications

the case 𝛼 = 𝛽, often occurs, which

means that the light is reflected back

into the direction of the incident

light. Such an arrangement is called a

Littrow-grating mount.

4.2 GRATING SPECTROMETER
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The grating equation for constructive interference reduces to :

2𝑑𝑠𝑒𝑛𝛼 = 𝑚𝜆

Blaze angle for a Littrow 
grating

Maximum reflectivity of the Littrow grating is achieved for 𝑖 = 𝑟 = 0, leading to 𝜃 =

𝛼 as shown in Figure.

The Littrow grating acts as a wavelength-selective reflector because
light is only reflected if the incident wavelength satisfies the
coindition 2𝑑𝑠𝑒𝑛𝛼 = 𝑚𝜆.

𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽 = 𝑚𝜆

4.2 GRATING SPECTROMETER
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The path difference between partial waves reflected by adjacent grooves is Δ𝑠 =

𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽 and the corresponding phase difference is:

𝜙 =
2𝜋

𝜆
Δ𝑠 =

2𝜋

𝜆
𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽

The superposition of the amplitudes reflected from all 𝑁 grooves in the direction 𝛽

gives the total reflected amplitude:

𝐴𝑅 = )𝑅(𝛽 

𝑚=0

𝑁−1

𝐴𝑔𝑒
𝑖𝑚𝜙 = )𝑅(𝛽 𝐴𝑔 

𝑚=0

𝑁−1

𝑒𝑖𝑚𝜙

In order to determine the amplitude, it is necessary to expand the series: 



𝑚=0

𝑁−1

𝑒𝑖𝑚𝜙 = 1 + 𝑒𝑖𝜙 + 𝑒2𝑖𝜙+. . +𝑒𝑖(𝑁−1)𝜙

We now examine the intensity distribution 𝐼(𝛽) of the reflected light when a

monochromatic plane wave is incident onto an arbitrary grating.

4.2 GRATING SPECTROMETER
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We multiply both sides by (1 − 𝑒𝑖𝜙):

1 − 𝑒𝑖𝜙 

𝑚=0

𝑁−1

𝑒𝑖𝑚𝜙 = (1 − 𝑒𝑖𝜙)(1 + 𝑒𝑖𝜙 + 𝑒2𝑖𝜙+. . +𝑒𝑖 𝑁−1 𝜙)

Expanding the terms of the product of the right-hand side, all the terms are

eliminated each other, apart from 1 and 𝑒𝑖𝑁𝜙. Thus:



𝑚=0

𝑁−1

𝑒𝑖𝑚𝜙 =
1 + 𝑒𝑖𝑁𝜙

1 − 𝑒𝑖𝜙

Then substituting:

𝐴𝑅 = )𝑅(𝛽 𝐴𝑔
1 − 𝑒𝑖𝑁𝜙

1 − 𝑒𝑖𝜙

where 𝑅(𝛽) is the reflectivity of the grating, which depends on the
reflection angle 𝛽 and 𝐴𝑔 is the amplitude of the partial wave incident

onto each groove.

4.2 GRATING SPECTROMETER
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Because the intensity of the reflected wave is related to its amplitude by the

relation:

𝐼𝑅 = 𝜀0𝑐𝐴𝑅𝐴𝑅
∗

we have that the intensity of the reflected wave will be:

𝐼𝑅 = 𝜀0𝑐𝑅(𝛽) 𝐴𝑔𝐴𝑔
∗
1 − 𝑒𝑖𝑁𝜙

1 − 𝑒𝑖𝜙

2

Since that the square modulus of a ratio is equal to the ratio of the square modulus:

1 − 𝑒𝑖𝑁𝜙

1 − 𝑒𝑖𝜙

2

=
1 − 𝑒𝑖𝑁𝜙

2

1 − 𝑒𝑖𝜙 2
=

1 − 𝑐𝑜𝑠 𝑁𝜙 − 𝑖𝑠𝑒𝑛 𝑁𝜙 2

1 − 𝑐𝑜𝑠 𝜙 − 𝑖𝑠𝑒𝑛 𝜙 2

=
1 − 𝑐𝑜𝑠 𝑁𝜙 2 + 𝑠𝑒𝑛2 𝑁𝜙

1 − 𝑐𝑜𝑠 𝜙 2 + 𝑠𝑒𝑛2 𝜙

=
1 + 𝑐𝑜𝑠2 𝑁𝜙 − 2𝑐𝑜𝑠 𝑁𝜙 + 𝑠𝑒𝑛2 𝑁𝜙

1 + 𝑐𝑜𝑠2 𝜙 − 2𝑐𝑜𝑠 𝜙 + 𝑠𝑒𝑛2 𝜙
=
2 − 2𝑐𝑜𝑠 𝑁𝜙

2 − 2𝑐𝑜𝑠 𝜙
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Since:

𝑠𝑒𝑛2
𝜙

2
=
1 − 𝑐𝑜𝑠𝜙

2

we have:

1 − 𝑒𝑖𝑁𝜙

1 − 𝑒𝑖𝜙

2

=
𝑠𝑒𝑛2

𝑁𝜙
2

𝑠𝑒𝑛2
𝜙
2

Then the intensity of the reflected wave can be expressed as:

𝐼𝑅 = 𝐼0𝑅(𝛽)
𝑠𝑒𝑛2

𝑁𝜙
2

𝑠𝑒𝑛2
𝜙
2

with 𝐼0 = 𝜀0𝑐𝐴𝑔𝐴𝑔
∗
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This intensity distribution is plotted in Figure for two different values of the total groove 

number 𝑁. 

The principal maxima occur for 𝜙 = 2𝑚𝜋, and the integer 𝑚 is called the
order of interference.

The function 𝐼𝑅 has 𝑁 − 1 minima with 𝐼𝑅 = 0 between two
successive principal maxima. These minima occur at values of 𝜙 for

which 𝑁
𝜙

2
= 𝑙𝜋, with 𝑙 = 1, 2, … , 𝑁 − 1
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𝑠𝑒𝑛 𝛽𝑚 + 𝜀 = 𝑠𝑒𝑛𝛽𝑚𝑐𝑜𝑠𝜀 + 𝑐𝑜𝑠𝛽𝑚𝑠𝑒𝑛𝜀 ~ 𝑠𝑒𝑛𝛽𝑚 + 𝜀𝑐𝑜𝑠𝛽𝑚

in the expression for 𝜙

assuming 𝛿1 =
2𝜋

𝜆
𝑑𝜀𝑐𝑜𝑠𝛽𝑚 ≪ 1. 

The line profile 𝐼(𝛽) of the principal maximum of order 𝑚 m around the diffraction

angle 𝛽𝑚 can be derived by substituting 𝛽 = 𝛽𝑚 + 𝜀 using the expression found for

𝐼𝑅.

Because for large 𝑁, 𝐼(𝛽) is very sharply centered

around 𝛽𝑚 and we can assume 𝜀 ≪ 𝛽𝑚.

Using the relation:

𝐼𝑅 = 𝐼0𝑅(𝛽)
𝑠𝑒𝑛2

𝑁𝜙
2

𝑠𝑒𝑛2
𝜙
2

𝜙 =
2𝜋

𝜆
𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽

𝜙 𝛽 =
2𝜋

𝜆
𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛 𝛽𝑚 + 𝜀 =

2𝜋

𝜆
𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽𝑚 + 𝜀𝑐𝑜𝑠𝛽𝑚

from which:

𝜙 𝛽 =
2𝜋

𝜆
𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽𝑚 +

2𝜋

𝜆
𝑑𝜀𝑐𝑜𝑠𝛽𝑚 = 2𝑚𝜋 + 𝛿1

2𝑚𝜋
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Replacing it in 𝐼𝑅, you get:

𝐼𝑅 = 𝐼0𝑅(𝛽)
𝑠𝑒𝑛2

𝑁𝛿1
2

𝑠𝑒𝑛2
𝛿1
2

≃ 𝐼0𝑅(𝛽) 𝑁
2
𝑠𝑒𝑛2

𝑁𝛿1
2

𝑁𝛿1
2

2

The first two minima on both sides of the central maximum at 𝛽𝑚 are at:

𝑁𝛿1 = ±2𝜋

che corrisponde a:

𝜀 Τ1 2 =
±𝜆

𝑁𝑑𝑐𝑜𝑠𝛽𝑚

The central maximum of 𝑚-th order therefore has a line profile with a base

halfwidth:

Δ𝛽 =
𝜆

𝑁𝑑𝑐𝑜𝑠𝛽𝑚

𝐼𝑅 = 𝐼0𝑅(𝛽)
𝑠𝑒𝑛2

𝑁𝜙
2

𝑠𝑒𝑛2
𝜙
2

𝜙 𝛽 = 2𝑚𝜋 + 𝛿1

𝑁
𝜙

2
= 𝑙𝜋

𝛿1 =
2𝜋

𝜆
𝑑𝜀𝑐𝑜𝑠𝛽𝑚
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Δ𝛽 =
𝜆

𝑁𝑑𝑐𝑜𝑠𝛽𝑚

This corresponds to a diffraction pattern produced by an

aperture with width 𝑏 = 𝑁𝑑𝑐𝑜𝑠𝛽𝑚, which is just the size of

the whole grating projected onto a plane, normal to the

direction normal of 𝛽𝑚:

Calculate the spectral resolving power. Differentiating the grating equation

𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽 = 𝑚𝜆 with respect to 𝜆, we obtain at a given angle 𝛼 the angular

dispersion:
𝑑𝛽

𝑑𝜆
=

𝑚

𝑑𝑐𝑜𝑠𝛽

Combining it with the relation: 𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽 = 𝑚𝜆, you get:

𝑑𝛽

𝑑𝜆
=
𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽

𝜆𝑐𝑜𝑠𝛽

𝑑

This illustrates that the angular dispersion is determined solely by

the angles 𝛼 and 𝛽 and not by the number of grooves!
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𝑑𝛽

𝑑𝜆
=
2𝑡𝑔𝛼

𝜆

The resolving power can be immediately derived from its definition R =
𝜆

Δ𝜆
≤ 𝑎

𝑑𝜃

𝑑𝜆
and

considering 𝑎 = 𝑁𝑑𝑐𝑜𝑠𝛽 as the size of the grating and
𝑑𝜃

𝑑𝜆
=

𝑑𝛽

𝑑𝜆
:

𝑑𝛽

𝑑𝜆
Δ𝜆 =

𝜆

𝑁𝑑𝑐𝑜𝑠𝛽

Using the relation 
𝑑𝛽

𝑑𝜆
=

𝑠𝑒𝑛𝛼±𝑠𝑒𝑛𝛽

𝜆𝑐𝑜𝑠𝛽
, the latter can be rewritten as:

𝜆

Δ𝜆
=

)𝑁𝑑(𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽

𝜆

which can be reduced, using 𝑑 𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽 = 𝑚𝜆, as:

𝑅 =
𝜆

Δ𝜆
= 𝑚𝑁

For the Littrow mount with 𝛼 = 𝛽, we obtain:

𝑑𝛽

𝑑𝜆
=
𝑠𝑒𝑛𝛼 ± 𝑠𝑒𝑛𝛽

𝜆𝑐𝑜𝑠𝛽
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The theoretical spectral resolving power is the product of the diffraction order 𝑚 with the

total number 𝑁 of illuminated grooves. If the finite slit width 𝑏 and the diffraction at

limiting apertures are taken into account, the practically achievable resolving power is

about 2—3 times lower.

Minute deviations of the distance d between adjacent grooves, caused by
inaccuracies during the ruling process, may result in constructive interference
from parts of the grating for "wrong" wavelengths. Such unwanted maxima,
which occur for a given angle of incidence a into "wrong" directions 𝛽, are
called grating ghosts.

Often it is advantageous to use the spectrometer in second order (𝑚 = 2), which
increases the spectral resolution by a factor of 2 without losing much intensity, if the
blaze angle is correctly chosen to satisfy the condition with 𝑚 = 2.

Although the intensity of these ghosts is generally very small, intense
incident radiation at a wavelength 𝜆 may cause ghosts with
intensities comparable to those of other weak lines in the spectrum.
This problem is particularly serious in laser spectroscopy when the
intense light at the laser wavelength, which is scattered by cell walls
or windows, reaches the entrance slit of the monochromator.
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4.3.1 Basic concepts

The basic principle of all interferometers may be summarized as follows.

The incident lightwave with intensity 𝐼0 is divided into two or more partial
beams with amplitudes 𝐴𝑘 which pass different optical path lengths 𝑠𝑘 =
𝑛𝑥𝑘 (with 𝑛 is the refractive index), before they are again superimposed at
the exit of the interferometer.

Since all partial beams come from the same source, they are coherent as
long as the maximum path difference does not exceed the coherence length.
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The total amplitude of the transmitted wave, which is the superposition of all partial

waves, depends on the amplitudes 𝐴𝑘 and on the phases 𝜙𝑘 = 𝜙0 +
2𝜋𝑠𝑘

𝜆
of the partial

waves. It is therefore sensitively dependent on the wavelength.

Δ𝑠𝑖𝑘 = 𝑚𝜆, con 𝑚 = 1,2,3…

The wavelength interval:

𝛿𝜆 = 𝜆𝑚 − 𝜆𝑚+1 =
Δ𝑠

𝑚
−

Δ𝑠

𝑚 + 1
=

Δ𝑠

𝑚2 +𝑚
=

𝜆

𝑚 + 1

with 𝜆 =
𝜆𝑚+𝜆𝑚+1

2
is called the free spectral range of 

the interferometer. 

The maximum transmitted intensity is obtained when all partial waves interfere
constructively. This gives the condition for the optical path difference Δ𝑠𝑖𝑘 = 𝑠𝑖 − 𝑠𝑘
namely:

Suppose that Δ𝑠𝑖𝑘 is fixed. The wavelengths matching the condition Δ𝑠𝑖𝑘 = 𝑚𝜆 will have 

the same phase shift:

4.3 INTERFEROMETERS
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It is more conveniently expressed in terms of frequency. With 𝜐 =
𝑐

𝜆
, yields Δ𝑠 =

𝑚𝑐

𝜐𝑚

and the free spectral frequency range:

𝛿𝜐 = 𝜐𝑚+1 − 𝜐𝑚 =
𝑐

Δ𝑠
becomes independent of the order 𝑚.

Examples of devices in which only two partial beams interfere are
the Michelson interferometer and the Mach–Zehnder
interferometer. Multiple-beam interference is used, for instance, in
the grating spectrometer, the Fabry–Perot interferometer, and in
multilayer dielectric coatings of highly reflecting mirrors.

It is important to realize that from one interferometric measurement all
wavelengths 𝜆 = 𝜆0 +𝑚𝛿𝜆 are equivalent with respect to the transmission of
the interferometer. One therefore has at first to measure 𝜆 within one free
spectral range using other techniques before the absolute wavelength can be
obtained with an interferometer.

4.3 INTERFEROMETERS
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4.3.2 Michelson interferometer

The basic principle of the Michelson interferometer (MI) is illustrated in Figure:

The incident plane wave

𝐸 = 𝐴0𝑒
𝑖 𝜔𝑡−𝑘𝑥

is split by the beam splitter S (with reflectivity 𝑅 and transmittance 𝑇) into two waves:

𝐸1 = 𝐴1𝑒
𝑖 𝜔𝑡−𝑘𝑥+𝜙1

𝐸2 = 𝐴2𝑒
𝑖 𝜔𝑡−𝑘𝑦+𝜙2

SPECTROSCOPIC 
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If the beam splitter has negligible absorption, 𝑅 + 𝑇 = 1, the amplitudes 𝐴1 and 𝐴2 are

determined by:

൝
𝐴1 = 𝑅𝐴0
𝐴0
2 = 𝐴1

2 + 𝐴2
2

After being reflected at the plane mirrors 𝑀1 and 𝑀2, the two waves

are superimposed in the plane of observation 𝐵. The amplitudes of

the two waves in the plane 𝐵 is 𝑅𝑇𝐴0 because each wave has been

transmitted and reflected once at the beam splitter surface 𝑆.

𝜙 =
2𝜋

𝜆
2 𝑆𝑀1 − 𝑆𝑀2 + Δ𝜙

where Δ𝜙 accounts for additional phase shifts that may be caused by
reflection.

The phase difference 𝜙 between the two waves is:

𝐸1 = 𝐴1𝑒
𝑖 𝜔𝑡−𝑘𝑥+𝜙1

𝐸2 = 𝐴2𝑒
𝑖 𝜔𝑡−𝑘𝑦+𝜙2

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer

SPECTROSCOPIC 

INSTRUMENTATION



41

The total complex field amplitude in the plane 𝐵 is then:

𝐸 = 𝑅𝑇𝐴0𝑒
𝑖 𝜔𝑡+𝜙0 1 + 𝑒𝑖𝜙

The detector in 𝐵 cannot follow the rapid oscillations with frequency 𝜔 but measures the

time-averaged intensity 𝐼𝑇 :

𝐼𝑇 =
1

2
𝑐𝜀0𝐴0

2𝑅𝑇 1 + 𝑒𝑖𝜙 1 + 𝑒−𝑖𝜙 = 𝑐𝜀0𝐴0
2𝑅𝑇 1 + 𝑐𝑜𝑠𝜙 =

1

2
𝐼0 1 + 𝑐𝑜𝑠𝜙

with 𝑅 = 𝑇 =
1

2
and 𝐼0 =

1

2
𝑐𝜀0𝐴0

2

If mirror 𝑀2 s mounted on a carriage) moves along a distance Δ𝑦, the
optical path difference changes by Δ𝑠 = 2𝑛Δ𝑦 and the phase

difference 𝜙 changes by 2𝜋
Δ𝑠

𝜆
.

Therefore, 𝐼𝑇 can be seen as a function of the
variable 𝜙. How can I vary 𝜙? I need to change
the length of one of the interferometer arms.

𝜙 =
2𝜋

𝜆
2 𝑆𝑀1 − 𝑆𝑀2 + Δ𝜙

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer
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Figure shows the intensity 𝐼𝑇(𝜙) in the plane 𝐵 as a function of 𝜙 for a monochromatic
incident plane wave.

For the maxima at 𝜙 = 2𝑚𝜋 (𝑚 = 0,1,2… ) the transmitted intensity 𝐼𝑇
becomes equal to the incident intensity 𝐼0, which means that the transmission
of the interferometer is 𝑇𝐼 = 1 for 𝜙 = 2𝑚𝜋.

𝐼𝑇 =
1

2
𝐼0 1 + 𝑐𝑜𝑠𝜙

In the minima for 𝜙 = (2𝑚 + 1)𝜋, the transmitted intensity 𝐼𝑇 is zero!
The incident plane wave is being reflected back into the source. This
illustrates that the MI can be regarded either as a wavelength-
dependent filter for the transmitted light, or as a wavelength-selective
reflector.

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer
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For divergent incident light the path difference between the two waves depends on the

inclination angle:

In the plane 𝐵 an interference pattern of circular fringes, concentric to the
symmetry axis of the system, is produced. Moving the mirror 𝑀2 causes the ring
diameters to change. The intensity behind a small aperture still follows
approximately the function 𝐼𝑇(𝜙) in Figure.

The MI can be used for absolute wavelength measurements by counting the
number 𝑁 of maxima in 𝐵 when the mirror 𝑀2 is moved along a known
distance Δ𝑦. The wavelength 𝜆 is then obtained from:

𝜆 =
Δ𝑠

𝑁
=
2𝑛Δ𝑦

𝑁

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer
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The MI may be described in another equivalent way, which is quite instructive.

Δ𝜔 = 𝜔 − 𝜔′ = 2𝑘 ∙ Ԧ𝑣 =
4𝜋

𝜆
𝑣

𝐼𝑇 =
1

2
𝐼0 1 + 𝑐𝑜𝑠Δ𝜔𝑡

As a result, the optical path difference is Δ𝑠 = 2𝑣𝑡 =
𝜆𝑡Δ𝜔

2𝜋

Assume that the mirror 𝑀2 moves with a constant velocity 𝑣 =
Δ𝑦

Δ𝑡
.

A wave with frequency 𝜔 and wave vector 𝑘 incident perpendicularly on the moving
mirror suffers a Doppler shift:

𝐼𝑇 =
1

2
𝐼0 1 + 𝑐𝑜𝑠𝜙

and the corresponding phase difference 𝜙 =
2𝜋

𝜆
Δ𝑠 = 𝑡Δ𝜔

Therefore 𝐼𝑇 can be seen as: 

We recognize as the time-averaged beat signal, obtained from the
superposition of two waves with frequencies 𝜔 and 𝜔′ = 𝜔 − Δ𝜔.

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer
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Note that the frequency 𝜔 =
𝑐

𝑣

Δ𝜔

2
f the incoming wave can be

measured from the beat frequency Δ𝜔, provided the velocity v
of the moving mirror is known.

The maximum path difference Δ𝑠 that still gives interference fringes in
the plane 𝐵 is limited by the coherence length of the incident radiation.

Δ𝜔 =
4𝜋

𝜆
𝑣

The MI with uniformly moving mirror 𝑀2 can be therefore regarded as a device that
transforms the high frequency 𝜔 (1014 − 1015 𝐻𝑧) of an optical wave into an easily

accessible radiofrequency-range
𝑣

𝑐
𝜔.

Using spectral lamps, the coherence length is limited by the Doppler
width of the spectral lines and is typically a few centimeters.

With stabilized single-mode lasers, however, coherence lengths of
several kilometers can be achieved. In this case, the maximum path
difference in the MI is, in general, not restricted by the source but by
technical limits imposed by laboratory facilities.

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer
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When the incoming radiation is composed of several components with frequencies 𝜔𝑘,

the total amplitude in the plane 𝐵 of the detector is the sum of all interference

amplitudes:

𝐸 =

𝑘

𝐴𝑘𝑒
𝑖 𝜔𝑘𝑡+𝜙0𝑘 1 + 𝑒𝑖𝜙𝑘

A detector with a large time constant does not follow the rapid oscillations of the

amplitude at frequencies 𝜔𝑘 , but gives a signal proportional to the sum of the

intensities 𝐼𝑘. We therefore obtain for the time-dependent total intensity:

𝐼𝑇 =

𝑘

1

2
𝐼0𝑘 1 + 𝑐𝑜𝑠𝜙𝑘 =

𝑘

1

2
𝐼0𝑘 1 + 𝑐𝑜𝑠Δ𝜔𝑘𝑡

where the audio frequencies Δ𝜔𝑘 =
2𝜔𝑘𝑣

𝑐
are determined by the frequencies

𝜔𝑘 of the components and by the velocity 𝑣 of the moving mirror.

𝐸 = 𝑅𝑇𝐴0𝑒
𝑖 𝜔𝑡+𝜙0 1 + 𝑒𝑖𝜙

𝐼𝑇 =
1

2
𝐼0 1 + 𝑐𝑜𝑠𝜙

Measurements of these frequencies Δ𝜔𝑘 llows one to reconstruct

the spectral components of the incoming wave with frequencies 𝜔𝑘

(Fourier transform spectroscopy).

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer
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ҧ𝐼 =
1

2
𝐼10 1 + 𝑐𝑜𝑠 2𝜔1

𝑣

𝑐
𝑡 +

1

2
𝐼20 1 + 𝑐𝑜𝑠 2𝜔2

𝑣

𝑐
𝑡

= 𝐼0 1 + 𝑐𝑜𝑠 𝜔1 − 𝜔2

𝑣

𝑐
𝑡 𝑐𝑜𝑠 𝜔1 +𝜔2

𝑣

𝑐
𝑡

where we have assumed 𝐼10 = 𝐼20 = 𝐼0.

For example, when the incoming wave consists of two components with frequencies

𝜔1 and 𝜔2, the interference pattern varies with time according to:

𝜔 =
𝑐

𝑣

Δ𝜔

2

ҧ𝐼 = 

𝑘

1

2
𝐼0𝑘 1 + 𝑐𝑜𝑠Δ𝜔𝑘𝑡

This is a beat signal, where the
amplitude of the interference signal at

𝜔1 + 𝜔2
𝑣

𝑐
is modulated at the

difference frequency 𝜔1 − 𝜔2
𝑣

𝑐

and we used the relation cos 𝛼𝑐𝑜𝑠𝛽 =
1

2
cos 𝛼 − 𝛽 + cos (𝛼 + 𝛽) with 𝛼 = 𝜔1 −

𝜔2 e 𝛽 = 𝜔1 + 𝜔2:

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer
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The spectral resolution can roughly be estimated as follows.

𝜆

∆𝜆
=

1
2

2∆𝑦
𝑁1

+
2∆𝑦
𝑁2

2∆𝑦
𝑁1

−
2∆𝑦
𝑁2

=
1

2

𝑁1 + 𝑁2
𝑁1𝑁2

𝑁2 −𝑁1
𝑁1𝑁2

=
1

2

𝑁1 +𝑁2
𝑁2 −𝑁1

Assuming 𝜆1 = 𝜆2 + ∆𝜆, with ∆𝜆 ≪ 𝜆, and 𝜆 =
𝜆1+𝜆2

2
, he spectral resolving power

can be expressed as:

The two wavelengths can be clearly distinguished when 𝑁2 ≥ 𝑁1 + 1.

If ∆𝑦 is the path difference traveled by the moving mirror, the number of interference

maxima that are counted by the detector is: 𝑁1 =
2∆𝑦

𝜆1
for an incident wave with the

wavelength 𝜆1, and 𝑁2 =
2∆𝑦

𝜆2
for an incident wave with wavelength 𝜆2, with 𝜆2 < 𝜆1.

𝜆1 =
2∆𝑦

𝑁1

𝜆2 =
2∆𝑦

𝑁2

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer
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Imposing the minimum condition so that the two wavelengths are distinguishable, 𝑁2 =

𝑁1 + 1, at the denominator of the relation, we get:

𝜆

∆𝜆
=
𝑁1 +𝑁2

2
= 𝑁 =

∆𝑠

𝜆

with 𝑁 =
𝑁1+𝑁2

2
.

𝜐

∆𝜐
= 𝑁 =

∆𝑠

𝜆

It can be easily verified that the result is identical even in the frequency

domain:

The spectral resolving power depends only on the count of the interference fringes.

𝜆

∆𝜆
=
1

2

𝑁1 + 𝑁2
𝑁2 − 𝑁1

4.3 INTERFEROMETERS
4.3.2 Michelson interferometer
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4.3.3 Mach-Zender interferometer
Analogous to the Michelson interferometer, the Mach–Zehnder interferometer is based

on the two-beam interference by amplitude splitting of the incoming wave.

The two waves travel along different paths with a path difference ∆𝑠 = 2𝑎𝑐𝑜𝑠𝛼.

Inserting a transparent object into one arm of the interferometer alters the optical path

difference between the two beams.

This results in a change of the interference pattern, which allows a very accurate

determination of the refractive index of the sample and its local variation.

The Mach–Zehnder interferometer may be regarded therefore as a sensitive

refractometer.

SPECTROSCOPIC 
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If the beam splitters 𝐵1 and 𝐵2 and the mirrors 𝑀1 e 𝑀2 are all strictly parallel, the path
difference between the two split beams does not depend on the angle of incidence 𝛼
because the path difference between the beams 1 and 3 is exactly compensated by the
same path length of beam 4 between 𝑀2 and 𝐵2.

Without the sample, the total path difference is therefore zero; it is
∆𝑠 = 𝑛 − 1 𝐿 with the sample having the refractive index 𝑛 in one arm
of the interferometer.

This means that the interfering waves in the symmetric interferometer (without
sample) experience the same path difference on the solid path as on the dashed
path in Figure.

4.3 INTERFEROMETERS
4.3.3 Mach-Zender interferometer
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Expanding the beam on path 3 gives an extended interference-fringe pattern, which

reflects the local variation of the refractive index.

With a beam expander (lenses 𝐿1 and 𝐿2 ), the laser beam can be expanded up to

10−20 cm and large objects can be tested.

The interference pattern can either be photographed or may be viewed
directly with the naked eye or with a television camera. Such a laser
interferometer has the advantage that the laser beam diameter can be
kept small everywhere in the interferometer, except between the two
expanding lenses.

4.3 INTERFEROMETERS
4.3.3 Mach-Zender interferometer
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4.3.4 Multiple-Beam Interference

In a grating spectrometer, the interfering partial waves emitted from the different

grooves of the grating all have the same amplitude.

In contrast, in multiple-beam interferometers these partial waves are produced by

multiple reflection at plane or curved surfaces and their amplitude decreases with

increasing number of reflections.

Therefore, the intensity distribution will differ from that found for a grating

𝐼𝑅 = 𝐼0𝑅(𝛽)
𝑠𝑒𝑛2

𝑁𝜙
2

𝑠𝑒𝑛2
𝜙
2
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At each surface the amplitude 𝐴𝑖 is split into a reflected component 𝐴𝑅 = 𝐴𝑖 𝑅 and

a refracted component 𝐴𝑇 = 𝐴𝑖 1 − 𝑅, neglecting absorption.

Provided the refractive index 𝑛 is known, 𝑅 can be calculated from
Fresnel’s formulas.

The reflectivity 𝑅 =
𝐼𝑅

𝐼𝑖
depends on the angle of incidence 𝛼 and on the

polarization of the incident wave.

Assume that a plane wave 𝐸 = 𝐴0𝑒
𝑖(𝜔𝑡−𝑘𝑥) is incident at the angle 𝛼 on a plane

transparent plate with two parallel, partially reflecting surfaces.

4.3 INTERFEROMETERS
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From Figure, the following relations are obtained for the amplitudes 𝐴𝑖 of waves reflected
at the upper surface, the amplitudes 𝐵𝑖 of refracted waves, the amplitudes 𝐶𝑖 f waves
reflected at the lower surface, and the amplitudes 𝐷𝑖 of transmitted waves:

𝐴1 = 𝑅 𝐴0

𝐵1 = 1 − 𝑅 𝐴0

𝐶1 = 𝑅 𝐵1 = 𝑅(1 − 𝑅) 𝐴0

𝐷1 = 1 − 𝑅 𝐵1 = (1 − 𝑅) 𝐴0

4.3 INTERFEROMETERS
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To follow...

𝐴2 = 1 − 𝑅 𝐶1 = (1 − 𝑅) 𝑅 𝐴0

𝐵2 = 𝑅 𝐶1 = 𝑅 (1 − 𝑅) 𝐴0

𝐶2 = 𝑅 𝐵2 = 𝑅 𝑅(1 − 𝑅) 𝐴0

𝐷2 = 1 − 𝑅 𝐵2 = 𝑅(1 − 𝑅) 𝐴0

and then:

𝐴3 = 1 − 𝑅 𝐶2 = 𝑅 𝑅(1 − 𝑅) 𝐴0

4.3 INTERFEROMETERS
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Finally, it is easy to verify that the scheme can be generalized to the equations:

𝐴𝑖+1 = 𝑅 𝐴𝑖 per 𝑖 ≥ 2

𝐷𝑖+1 = 𝑅 𝐷𝑖 per 𝑖 ≥ 1

Two successively reflected partial waves have the optical path difference :

∆𝑠 = 2𝑛𝑎 − 𝑏𝑠𝑒𝑛𝛼

From Figure, it can be seen that:

𝑑 = 𝑎𝑐𝑜𝑠𝛽
𝑏

2
= 𝑑𝑡𝑔𝛽

𝐴1 = 𝑅 𝐴0

𝐴2 = (1 − 𝑅) 𝑅 𝐴0

𝐴3 = 𝑅 𝑅(1 − 𝑅) 𝐴0

𝐷1 = (1 − 𝑅) 𝐴0

𝐷2 = 1 − 𝑅 𝐵2 = 𝑅(1 − 𝑅) 𝐴0

4.3 INTERFEROMETERS
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Replacing:

∆𝑠 = 2𝑛
𝑑

𝑐𝑜𝑠𝛽
− 2𝑑𝑡𝑔𝛽𝑠𝑒𝑛𝛼

Because 𝑠𝑒𝑛𝛼 = 𝑛𝑠𝑒𝑛𝛽, the optical path difference can be expressed as:

∆𝑠 = 2𝑛
𝑑

𝑐𝑜𝑠𝛽
− 2𝑑

𝑠𝑒𝑛𝛽

𝑐𝑜𝑠𝛽
𝑛𝑠𝑒𝑛𝛽 = 2𝑛

𝑑

𝑐𝑜𝑠𝛽
− 2𝑛𝑑

1 − 𝑐𝑜𝑠2𝛽

𝑐𝑜𝑠𝛽
= 2𝑛𝑑𝑐𝑜𝑠𝛽

= 2𝑛𝑑 1 − 𝑠𝑒𝑛2𝛽

This path difference causes a corresponding phase difference:

𝜙 =
2𝜋Δ𝑠

𝜆
+ Δ𝜙

where Δ𝜙 takes into account possible phase changes caused by the

reflections.

∆𝑠 = 2𝑛𝑎 − 𝑏𝑠𝑒𝑛𝛼

𝑑 = 𝑎𝑐𝑜𝑠𝛽

𝑏

2
= 𝑑𝑡𝑔𝛽

4.3 INTERFEROMETERS
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For instance, the incident wave with amplitude 𝐴1 suffers the phase jump Δ𝜙 = 𝜋 while
being reflected at the medium with 𝑛 > 1. Including this phase jump, we can write:

𝐴1 = 𝑅 𝐴0 𝑒
𝑖𝜋 = − 𝑅 𝐴0

Taking into account the phase jump, and that all the 𝐴𝑖 per 𝑖 ≥ 1 they do not suffer 

phase jump because the reflection takes place inside the plate, we will have:

𝐴1 = − 𝑅 𝐴0

𝐴2 = (1 − 𝑅) 𝑅 𝐴0

The total amplitude 𝐴 of the reflected wave is obtained by summation over all partial

amplitudes 𝐴𝑖, taking into account the different phase shifts:

𝐴 = − 𝑅 𝐴0 + 1 − 𝑅 𝑅 𝐴0 𝑒
𝑖𝜙 + 

𝑚=3

𝑝

𝐴𝑚𝑒
𝑖 𝑚−1 𝜙

= − 𝑅 𝐴0 1 − (1 − 𝑅)𝑒𝑖𝜙 

𝑚=0

𝑝−2

𝑅𝑚𝑒𝑖𝑚𝜙

𝐴1 = 𝑅 𝐴0

𝐴1 = 𝑅 𝐴0

𝐴2 = (1 − 𝑅) 𝑅 𝐴0

𝐴𝑖+1 = 𝑅 𝐴𝑖 per 𝑖 ≥ 2

𝐴𝑖+1 = 𝑅 𝐴𝑖 per 𝑖 ≥ 2, 

4.3 INTERFEROMETERS
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If we suppose an infinite number of reflections, the geometric series

converges because 𝑅 < 1 and then for 𝑝 → ∞:



𝑚=0

𝑝−2

𝑅𝑚𝑒𝑖𝑚𝜙 =
1

1 − 𝑅𝑒𝑖𝜙

Replacing:

𝐴 = − 𝑅 𝐴0 1 −
1 − 𝑅 𝑒𝑖𝜙

1 − 𝑅𝑒𝑖𝜙
= 𝑅 𝐴0

1 − 𝑒𝑖𝜙

1 − 𝑅𝑒𝑖𝜙

The intensity of the reflected wave is:

𝐼𝑅 = 2𝑐𝜀0𝐴𝐴
∗

and then using the previous expression:



𝑚=0

𝑝−2

𝑅𝑒𝑖𝜙
𝑚

𝐴 = − 𝑅 𝐴0 1 − (1 − 𝑅)𝑒𝑖𝜙 

𝑚=0

𝑝−2

𝑅𝑚𝑒𝑖𝑚𝜙

4.3 INTERFEROMETERS
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𝐼𝑅 = 2𝑐𝜀0𝐴𝐴
∗ = 2𝑐𝜀0𝑅 𝐴0

2
1 − 𝑒𝑖𝜙

1 − 𝑅𝑒𝑖𝜙
∙
1 − 𝑒−𝑖𝜙

1 − 𝑅𝑒−𝑖𝜙

= 2𝑐𝜀0𝑅 𝐴0
2

2 − 𝑒−𝑖𝜙 − 𝑒𝑖𝜙

1 − 𝑅𝑒−𝑖𝜙 − 𝑅𝑒𝑖𝜙 + 𝑅2
= 2𝑐𝜀0𝑅 𝐴0

2
2 − 2𝑐𝑜𝑠𝜙

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜙

With 𝐼0 = 2𝑐𝜀0 𝐴0
2 and using the trigonometric relation: 𝑠𝑒𝑛2

𝜙

2
=

1−𝑐𝑜𝑠𝜙

2
, the

intensity of the reflected wave can be written as:

𝐼𝑅 = 𝐼0𝑅
4𝑠𝑒𝑛2

𝜙
2

1 + 𝑅2 − 2𝑅 + 2𝑅 − 2𝑅𝑐𝑜𝑠𝜙
= 𝐼0𝑅

4𝑠𝑒𝑛2
𝜙
2

1 − 𝑅 2 + 4𝑅𝑠𝑒𝑛2
𝜙
2

In an analogous way, we find for the total transmitted amplitude.

Being 𝐷𝑖+1 = 𝑅 𝐷𝑖 for 𝑖 ≥ 1, together with 𝐷1 = (1 − 𝑅) 𝐴0 and

𝐷2 = 𝑅(1 − 𝑅) 𝐴0 :

𝐴 = 𝑅 𝐴0
1 − 𝑒𝑖𝜙

1 − 𝑅𝑒𝑖𝜙

4.3 INTERFEROMETERS
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𝐷 = 

𝑚=1

∞

𝐷𝑚𝑒
𝑖 𝑚−1 𝜙 = (1 − 𝑅)𝐴0 

𝑚=0

∞

𝑅𝑚𝑒𝑖𝑚𝜙

The geometric series converges:

𝐷 =
൫1 − 𝑅)𝐴0
1 − 𝑅𝑒𝑖𝜙

The intensity of the transmitted wave will be (the calculations to the denominator

are identical to the case of the reflected wave):

𝐼𝑇 = 2𝑐𝜀0𝐷𝐷
∗ = 2𝑐𝜀0

1 − 𝑅 2 𝐴0
2

1 − 𝑅 2 + 4𝑅𝑠𝑒𝑛2
𝜙
2

= 𝐼0
1 − 𝑅 2

1 − 𝑅 2 + 4𝑅𝑠𝑒𝑛2
𝜙
2

𝐷1 = (1 − 𝑅) 𝐴0

𝐷2 = 1 − 𝑅 𝐵2 = 𝑅(1 − 𝑅) 𝐴0

𝐷𝑖+1 = 𝑅 𝐷𝑖 per 𝑖 ≥ 1

4.3 INTERFEROMETERS
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Eqiuations 𝐼𝑅 and 𝐼𝑇 are called the Airy formulas. 

𝐼𝑅 = 𝐼0

𝐹𝑠𝑒𝑛2
𝜙
2

1 + 𝐹𝑠𝑒𝑛2
𝜙
2

𝐼𝑇 = 𝐼0
1

1 + 𝐹𝑠𝑒𝑛2
𝜙
2

𝐹 =
4𝑅

(1 − 𝑅)2

Airy equations can be written in the form:

Using the abbreviation:

𝐼𝑅 = 𝐼0𝑅
4𝑠𝑒𝑛2

𝜙
2

1 − 𝑅 2 + 4𝑅𝑠𝑒𝑛2
𝜙
2

𝐼𝑇 = 𝐼0
1 − 𝑅 2

1 − 𝑅 2 + 4𝑅𝑠𝑒𝑛2
𝜙
2

4.3 INTERFEROMETERS
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Figure illustrates 𝐼𝑇 for different values of the reflectivity 𝑅.

The maximum transmittance (𝑇 = 𝐼𝑇/𝐼0) is 𝑇 = 1 for 𝜙 = 2𝑚𝜋. At these maxima

𝐼𝑇 = 𝐼0, therefore the reflected intensity 𝐼𝑅 = 0.

𝑇𝑚𝑖𝑛 =
1

1 + 𝐹
=

1

1 +
4𝑅

1 − 𝑅 2

=
1 − 𝑅 2

1 − 𝑅 2 + 4𝑅
=

1 − 𝑅

1 + 𝑅

2

𝐼𝑇 = 𝐼0
1

1 + 𝐹𝑠𝑒𝑛2
𝜙
2

𝐹 =
4𝑅

(1 − 𝑅)2

The minima transmittance are when 𝑠𝑒𝑛2
𝜙

2
= 1, corresponding to:
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Free spectral range and Finesse

The frequency range 𝛿𝜐 between two maxima is the free spectral range of the

interferometer.

∆𝑠 = 2𝑛𝑑𝑐𝑜𝑠𝛽 = 2𝑛𝑑 1 − 𝑠𝑒𝑛2𝛽 = 2𝑛𝑑 1 −
𝑠𝑒𝑛2𝛼

𝑛2
= 2𝑑 𝑛2 − 𝑠𝑒𝑛2𝛼

(where Snell's law 𝑠𝑒𝑛𝛼 = 𝑛𝑠𝑒𝑛𝛽 was used), the FSR will be:

𝛿𝜐 =
𝑐

∆𝑠
=

𝑐

2𝑑 𝑛2 − 𝑠𝑒𝑛2𝛼

For vertical incidence (𝛼 = 0), the free spectral range becomes:

𝛿𝜐 =
𝑐

2𝑛𝑑

With 𝜙 =
2𝜋Δ𝑠

𝜆
and using
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Free spectral range and Finesse

The full-width half-maximum 𝜖 = 𝜙1 − 𝜙2 with 𝐼(𝜙1) = 𝐼(𝜙2) = 𝐼0/2 of the

transmission maxima can be calculated using the expression previously derived for 𝐼𝑇:

𝐼0
2
= 𝐼0

1

1 + 𝐹𝑠𝑒𝑛2
𝜙1
2

𝑠𝑒𝑛2
𝜙1
2

=
1

𝐹

𝜙1 = 2𝑎𝑟𝑐𝑠𝑒𝑛
1

𝐹
= 2𝑎𝑟𝑐𝑠𝑒𝑛

1 − 𝑅

2 𝑅

and so:

𝜖 = 4𝑎𝑟𝑐𝑠𝑒𝑛
1 − 𝑅

2 𝑅
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Free spectral range and Finesse

Assuming 𝑅 ≈ 1, then 1 − 𝑅 ≪ 𝑅 and so:

𝜖 ≈ 4
1 − 𝑅

2 𝑅
= 2

1 − 𝑅

𝑅
=

4

𝐹

Now we need to convert 𝜖 = ∆𝜙 in frequency units .

∆𝜐 =
𝜖

2𝜋
𝛿𝜐 =

𝑐

2𝑛𝑑

1 − 𝑅

𝜋 𝑅

The ratio 𝛿𝜐/∆𝜐 of free spectral range to the halfwidth of the transmission

maxima is called the finesse 𝑭∗of the interferometer:

𝐹∗ =
𝛿𝜐

∆𝜐
=

𝜋 𝑅

1 − 𝑅
=
𝜋

2
𝐹

𝛿𝜐 =
𝑐

2𝑛𝑑

𝜖 = 4𝑎𝑟𝑐𝑠𝑒𝑛
1 − 𝑅

2 𝑅

𝐹 =
4𝑅

(1 − 𝑅)2

Starting from the definition of 𝜙 =
2𝜋

𝜆
Δ𝑠 and combining it with expressions: 𝜆 =

𝑐

𝜈
and 𝛿𝜐 =

𝑐

Δ𝑠
, one obtain 𝜙 =

2𝜋𝜐

𝛿𝜐
, and 𝜖 = ∆𝜙 =

2𝜋∆𝜐

𝛿𝜐
, from which:
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Free spectral range and Finesse

𝐹∗ =
𝜋 𝑅

1 − 𝑅
=
𝜋

2
𝐹

Since we have assumed an ideal plane-parallel plate with a perfect surface quality, the
finesse is determined only by the reflectivity 𝑅 of the surfaces. In practice, however,
deviations of the surfaces from an ideal plane and slight inclinations of the two surfaces
cause imperfect superposition of the interfering waves. This results in a decrease and a
broadening of the transmission maxima, which decreases the total finesse.

Spectral resolution

The spectral resolution, 𝜐/∆𝜐 of an interferometer is
determined by the free spectral range 𝛿𝜐 and by the finesse 𝐹∗.

Two incident waves with frequencies 𝜐1 and 𝜐2 = 𝜐1 + Δ𝜐 can still
be resolved if their frequency separation Δ𝜐 is larger than 𝛿𝜐/𝐹∗,
which means that their peak separation should be larger than their
full halfwidth.

𝐹∗ =
𝛿𝜐

∆𝜐
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Spectral resolution

So the spectral resolving power of an interferometer os:

𝜐

Δ𝜐
=

𝜐

𝛿𝜐
𝐹∗

This can be also expressed by the optical path differences ∆𝑠 between two successive

partial waves, using 𝛿𝜐 =
𝑐

∆𝑠
:

𝜐

Δ𝜐
=
𝜐

𝑐
∆𝑠𝐹∗ = 𝐹∗

∆𝑠

𝜆

The resolving power of an interferometer is the product of finesse 𝐹∗

and optical path difference
∆𝑠

𝜆
in units of the wavelength. A comparison

with the resolving power of a grating spectrometer with 𝑁 grooves,
𝜐

Δ𝜐
= 𝑚𝑁 = 𝑁

∆𝑠

𝜆
, shows that the finesse 𝐹∗ can indeed be regarded as

the effective number of interfering partial waves.
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If we consider absorption losses for each reflective surface, the relation between the

reflectivity and the transmittivity must take into account a contribution 𝐴 due to losses,

namely 𝐴 = 1 − 𝑅 − 𝑇. As a consequence, the total amplitude of the transmitted wave

must be modified:

𝐷 =
൫1 − 𝑅 − 𝐴)𝐴0

1 − 𝑅𝑒𝑖𝜙

and the intensity of the transmitted wave is (the denominator calculations are identical

to the case of the reflected wave):

𝐼𝑇 = 2𝑐𝜀0𝐷𝐷
∗ = 𝐼0

1 − 𝑅 − 𝐴 2

1 − 𝑅 2 + 4𝑅𝑠𝑒𝑛2
𝜙
2

Introducing the same factor 𝐹 =
4𝑅

(1−𝑅)2
, the total intensity of the transmitted wave

when losses are included is:

𝐼𝑇 = 𝐼0
1 − 𝑅 − 𝐴 2

1 − 𝑅 2

1

1 + 4𝑅𝑠𝑒𝑛2
𝜙
2

= 𝐼0
𝑇2

𝐴 + 𝑇 2

1

1 + 4𝑅𝑠𝑒𝑛2
𝜙
2

𝐷 =
൫1 − 𝑅)𝐴0
1 − 𝑅𝑒𝑖𝜙
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The absorption causes two effects:

1. The maximum transmittance is decreased by the factor:

𝐼𝑇
𝐼0
=

𝑇2

𝐴 + 𝑇 2
=

𝑇2

1 − 𝑅 2
< 1

Note that even a small absorption of each reflecting surface results in a drastic 

reduction of the total transmittance. For 𝑅 = 0.9, 𝑇 = 0.05 and 𝐴 = 0.05, the factor

is  
𝑇2

(1−𝑅)2
= 0.25.

2. The factor 𝐹 becomes:

𝐹 =
4𝑅

1 − 𝑅 2
=

)4(1 − 𝑇 − 𝐴

𝑇 + 𝐴 2

which decreases with increasing 𝐴. Since 𝐹∗ =
𝜋

2
𝐹, this makes the

transmission peaks broader because of the decreasing number of

interfering partial waves.

𝐼𝑇 = 𝐼0
𝑇2

𝐴 + 𝑇 2

1

1 + 4𝑅𝑠𝑒𝑛2
𝜙
2
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4.3.5 Plane Fabry-Perot Interferometer

A practical realization of the multiple beam-interference discussed in this section may use

either a solid plane-parallel glass or fused quartz plate with two coated reflecting surfaces

(Fabry–Perot etalon) or two separate plates, where one surface of each plate is coated

with a reflection layer.

The two reflecting surfaces are opposed and are aligned to be as

parallel as achievable (Fabry–Perot interferometer). The outer surfaces

are coated with antireflection layers in order to avoid reflections from

these surfaces that might overlap the interference pattern.

Both devices can be used for parallel as well as for divergent incident

light. We now discuss only the case of illumination with parallel light.
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In laser spectroscopy, etalons are mainly used as wavelength-selective transmission

filters within the laser resonator to narrow the laser bandwidth. The wavelength 𝜆𝑚 or

frequency 𝜐𝑚 for the transmission maximum of 𝑚-th order, where the optical path

between successive beams is Δ𝑠 = 𝑚𝜆, will be:

𝜆𝑚 =
2𝑛𝑑

𝑚
𝑐𝑜𝑠𝛽 𝜐𝑚 =

𝑚𝑐

2𝑛𝑑𝑐𝑜𝑠𝛽

For all wavelengths 𝜆 = 𝜆𝑚 with 𝑚 = 0,1,2… in the incident light, the phase

difference between the transmitted partial waves becomes δ = 2𝑚𝜋 and the

transmitted intensity is:

𝐼𝑇 = 𝐼0
𝑇2

𝐴 + 𝑇 2

1

1 + 4𝑅𝑠𝑒𝑛2 𝑚𝜋
= 𝐼0

𝑇2

𝐴 + 𝑇 2 = 𝐼0
𝑇2

1 − 𝑅 2

The reflected waves interfere destructively for 𝜆 = 𝜆𝑚 and the reflected

intensity will be zero. Note, however, that this is only true for 𝐴 ≪ 1

and infinitely extended plane waves, where the different reflected

partial waves completely overlap.
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4.3.6 Multilayer Dielectric Coatings

The constructive interference found for the reflection of light from plane-parallel

interfaces between two regions with different refractive indices can be utilized to produce

highly reflecting, essentially absorption-free mirrors..

𝑅 =
𝑛1 − 𝑛2
𝑛1 + 𝑛2

2

To achieve maximum reflectivities, the numerator 𝑛1 − 𝑛2
2 should

be maximized and the denominator minimized. Since 𝑛1 is always
larger than one, this implies that 𝑛2 should be as large as possible.

The reflectivity 𝑅 of a plane interface between two regions with complex refractive indices

𝑛1 = 𝑛1
′ − 𝑖𝜅1 and 𝑛2 = 𝑛2

′ − 𝑖𝜅2 can be calculated from Fresnel’s formulas. It depends

on the angle of incidence 𝛼 and on the direction of polarization.

For vertical incidence (𝛼 = 0), one obtains from Fresnel’s formulas, for incident light

polarized parallel and perpendicular to the plane of incidence, the reflectivity:
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Unfortunately, the Kramer-Kroning dispersion relations :

𝛼 =
𝑁𝑒2

4𝜀0𝑚𝑐

𝛾
2

𝜔0 −𝜔 2 +
𝛾
2

2

𝑛′ = 1 +
𝑁𝑒2

4𝜀0𝑚𝜔0

𝜔0 −𝜔

𝜔0 −𝜔 2 +
𝛾
2

2

imply that a large value of 𝑛 also causes large absorption.

Choosing the proper optical thickness 𝑛𝑑 of each layer allows
constructive interference between the different reflected
amplitudes to be achieved. Reflectivities of up to 𝑅 = 0.9995 have
been reached.

The situation can be improved by selecting reflecting materials with low
absorption (which then necessarily also have low reflectivity) but using many
layers with alternating high and low refractive index 𝑛.
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Figure illustrates such constructive interference for the example of a two-layer coating..

The layers with refractive indices 𝑛1 and 𝑛2 and thicknesses 𝑑1 and 𝑑2
are evaporated onto an optically smooth substrate with the refractive

index 𝑛3.

The phase differences between all reflected components have to be

𝛿𝑚 = 2𝑚𝜋, with 𝑚 = 1,2,3… , for constructive interference.
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Assuming 𝑛1 > 𝑛2 and 𝑛3 > 𝑛2, and taking into account the phase shift 𝜋 at reflection

from an interface with a larger refractive index than that of the foregoing layer, we obtain

the conditions between 𝐴1 and 𝐴2 :

𝛿 𝑚=1 =
2𝜋

𝜆
Δ𝑠 + 𝜋 =

2𝜋

𝜆
2𝑛1𝑑1 + 𝜋 = 2𝜋

and

𝑛1𝑑1 =
𝜆

4

Similarly, the condition between 𝐴2 and 𝐴3 for the layer 𝑑2
is:

𝛿 𝑚=1 =
2𝜋

𝜆
Δ𝑠 + 𝜋 =

2𝜋

𝜆
2𝑛2𝑑2 + 𝜋 = 2𝜋

from which:

𝑛2𝑑2 =
𝜆

4
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The reflected amplitudes can be calculated from Fresnel’s formulas. The total reflected

intensity is obtained by summation over all reflected amplitudes taking into account the

correct phase. The refractive indices are now selected such that σ𝑖 𝐴𝑖 becomes a

maximum. The calculation is still feasible for our example of a two-layer coating and

yields for the three reflected amplitudes:

𝐴1 = 𝑅1𝐴0

𝐴2 = 𝑅2(1 − 𝑅1)𝐴0

𝐴3 = 𝑅3(1 − 𝑅2)(1 − 𝑅1)𝐴0

with reflectivities 𝑅𝑖 given by the Fresnel formula.

For example, if we consider:

𝑛1 = 1.6

𝑛2 = 1.2

𝑛3 = 1.45

𝑅𝑖 =
𝑛i − 𝑛i+1
𝑛i + 𝑛i+1

2
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you get:

𝐴1 = 0.231𝐴0

𝐴2 = 0.143𝐴0

𝐴3 = 0.094𝐴0

which leads to the total amplitude:

𝐴𝑅 =

𝑖

𝐴𝑖 = 0.468𝐴0

corresponding to a reflected intensity of:

𝐼𝑅 = 0.22𝐼0

This example illustrates that for materials with low absorption, many
layers are necessary to achieve a high reflectivity.
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Figure depicts schematically the composition of a dielectric multilayer mirror.

he calculation and optimization of multilayer coatings with up to 20 layers becomes

very tedious and time consuming and is therefore performed using computer

programs. By proper selection of different layers with slightly different optical path

lengths, one can achieve a high reflectivity over an extended spectral range.

Currently, “broad-band” reflectors are available with reflectivity of 𝑅 > 0.99 within

the spectral range 𝜆0 ± 0.2𝜆0, while the absorption losses are less than 0.2%.

At such low absorption losses, the scattering of light from imperfect
mirror surfaces may become the major loss contribution. In this case, the
mirror substrate must be of high quality, with roughness imperfections

smaller than
𝜆

20
.
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Instead of maximizing the reflectivity of a dielectric multilayer coating through

constructive interference, it is, of course, also possible to minimize it by destructive

interference. Such antireflection coatings are commonly used to minimize unwanted

reflections from the many surfaces of multiple-lens camera objectives, which would

otherwise produce an annoying background illumination of the photomaterial. In laser

spectroscopy such coatings are important for minimizing reflection losses of optical

components inside the laser resonator and for avoiding reflections from the back

surface of output mirrors, which would introduce undesirable couplings, thereby causing

frequency instabilities of single-mode lasers.

Using a single layer, the reflectivity reaches a
minimum only for a selected wavelength. We
obtain 𝐼𝑅 = 0 for 𝛿 = (2𝑚 + 1)𝜋, if the two

amplitudes 𝐴1 = 𝑅1𝐴0 and 𝐴2 = 𝑅2(1 −

𝑅1)𝐴0 reflected by the interfaces

𝑛1, 𝑛2 and 𝑛2, 𝑛3 are equal.

With multilayer antireflection coatings the reflectivity can be

decreased below 0.2% for an extended spectral range.
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EXERCISE 1

EXERCISE 1A spectrometer with groove size d = 0.56 𝜇𝑚 shall be used in first order for a

wavelength range around 500 𝑛𝑚 . What is the optimum blaze angle, if the

geometry of the spectrometer allows an angle of incidence 𝛼 about 20°?

EXERCISE 1

Let's start from the relation between the blaze angle 𝜃 with the angle of incidence

𝛼 and the diffraction angle 𝛽:
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𝜃 =
𝛼 − 𝛽

2

The diffraction angle 𝛽 can be determined by the grating equation with 𝑚 = 1 :

𝑑 𝑠𝑒𝑛𝛼 + 𝑠𝑒𝑛𝛽 = 𝜆
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thus:

𝛽 = 𝑎𝑟𝑐𝑠𝑒𝑛 𝑠𝑒𝑛𝛼 −
𝜆

𝑑
= 𝑎𝑟𝑐𝑠𝑒𝑛 0.342 −

0.5 𝜇𝑚

0.56 𝜇𝑚

= 𝑎𝑟𝑐𝑠𝑒𝑛 0.342 −
0.5 𝜇𝑚

0.56 𝜇𝑚
= −33.4°

Then the blaze angle 𝜃 is:

𝜃 =
𝛼 − 𝛽

2
=
20° + 33.4°

2
= 26.7°



EXERCISE 2

A fluorescence spectrum shall be measured with a spectral resolution of 10−2 𝑛𝑚 at

𝜆 = 500 𝑛𝑚. The experimentor decides to use a crossed arrangement of a grating

spectrometer (linear dispersion: 0.5 nm/mm) and a Fabry–Perot interferometer with

𝑅 = 0.97. Estimate the optimum combination of spectrometer slit width and Fabry–

Perot interferometer plate separation.

EXERCISE 2

The spectral resolution required to measure the fluorescence spectrum is:
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𝑅 =
𝜆

Δ𝜆
≥

500 𝑛𝑚

10−2 𝑛𝑚
= 5 ∙ 104

We determine the separation between the plates of the Fabry-Perot

interferometer in order to reach the required spectral resolving power:

𝜐

Δ𝜐
=
𝜐

𝑐
∆𝑠𝐹∗ = 𝐹∗

∆𝑠

𝜆



EXERCISE 2
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𝜐

Δ𝜐
=

𝜆

Δ𝜆
= 𝐹∗

∆𝑠

𝜆

where 𝐹∗ is the finesse and ∆𝑠 is the optical path difference between two consecutively

reflected partial waves .

The plate separation 𝑑 of the Fabry–Perot interferometer has to be:

∆𝑠 = 2𝑑

The finesse can be determined:

𝐹∗ =
𝜋 𝑅

1 − 𝑅
=
3.14 ∙ 0.985

0.03
= 103

Then the separation between the two plates must be:

𝑑 =
𝜆

Δ𝜆

𝜆

2𝐹∗
= 5 ∙ 104

0.5 𝜇𝑚

2 ∙ 103
= 121 𝜇𝑚
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When the interferometer is combined with the grating spectrometer, the spectral

interval Δ𝜆 transmitted by the spectrograph should be smaller than the Free Spectral

Range 𝛿𝜐 , in order to avoid the overlap of different orders.

The Free Spectral Range (𝛿𝜐) of the interferometer is equal to:

𝛿𝜐 =
𝑐

2𝑑

Using the relation (understood as absolute values):

𝛿𝜆 =
𝑐

𝜐2
𝛿𝜐

one obtain:

𝛿𝜆 =
𝑐

𝑐2
𝜆2

𝑐

2𝑑
=
𝜆2

2𝑑
=

250 ∙ 103 𝑛𝑚2

2 ∙ 121 ∙ 103 𝑛𝑚
= 1 𝑛𝑚
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Then the spectral resolution of the gratin spectrometer must be:

∆𝜆 =
𝜕𝜆

𝜕𝑥
Δ𝑠 ≤ 1 𝑛𝑚

Using the linear dispersion of the grating, we determine:

∆𝑠 ≤ 1 𝑛𝑚
𝜕𝜆

𝜕𝑥

−1

=
1 𝑛𝑚

5 ∙ 10−1
𝑛𝑚
𝑚𝑚

= 2𝑚𝑚

with Δ𝑠 equal to the width of the output slit of the spectrometer.


