
CHAPTER 5

LASER SPECTROSCOPIC TECHNIQUES
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SPECTROSCOPY

In standard absorption spectroscopy, radiation sources have a spectrally wide

continuous emission. The sources typically used were lamps.

The radiation emitted by the source is collimated by a lens lente 𝐿1 to
pass through a cell containing the absorbent gas.

The light exiting from the absorption cell is focused by a lens lente

𝐿2 on a dispersing instrument (spectrometer or interferometer) to
select the different spectral components. In this way, the intensity
𝐼𝑇(𝜆) of the transmitted light is measured as a function of the
wavelength 𝜆.



5.1 ADVANTAGES OF LASER SPECTROSCOPY

3
SPETTROSCOPIA 

LASER

By comparing 𝐼𝑇(𝜆) with the reference beam 𝐼𝑅(𝜆) (it can be acquired, for example,

by removing the absorption cell), the absorption spectrum can be derived:

𝐼𝐴 𝜆 = 𝑎 𝐼0 𝜆 − 𝐼𝑇(𝜆) = 𝑎 𝑏𝐼𝑅 𝜆 − 𝐼𝑇(𝜆)

where the constants 𝑎 and 𝑏 are introduced to consider the non-wavelength-
dependent losses of 𝐼𝑅(𝜆) and 𝐼𝑇(𝜆) . 

The spectral resolution is limited by the resolving power of the

spectrometer. Only by using expensive and bulky tools (e.g. Fourier

spectrometers), the Doppler limit can be reached.

The detection limit is determined by the minimum absorbed power
that the detector can reveal. In many cases, this is limited by the
noise level of the optical detector and the fluctuations in intensity of
the light source. Typically, the absorption limit that can be reached

is
Δ𝐼

𝐼
≥ 10−4 − 10−5.
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In contrast to radiation sources with large spectral emission, laser sources can be

tuned in wavelength and can cover a wide spectral region, from UV to infrared, with

extremely narrow line widths. In addition, their spectral power density can exceed

those of broadband, incoherent sources by several orders of magnitude.

We will see that these limits can be overcome by employing advanced
spectroscopy techniques.
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• Monochromators are not needed, since the spectral dispersion of the absorption

coefficient 𝛼(𝜔) can be directly measured by the difference Δ𝐼 𝜔 = 𝑎ሾ

ሿ
𝐼𝑅 𝜔 −

𝐼𝑇(𝜔) between the intensities of the reference beam 𝐼𝑅 = 𝐼2 and the transmitted

beam 𝐼𝑇 = 𝐼1 .

- Because the spectral power density of a laser is high, detector noise is

typically negligible. Fluctuations in intensity of a laser source, which limit the

sensitivity of detection, can be greatly reduced by using techniques for the

stabilization in intensity.

- Thanks to excellent collimation of the beam reachable with laser

sources, long optical paths can be achieved, even through multiple

reflections on small spaces (multi-pass absorption cells). Increasing

the optical path allows the measurement of optical transitions

even with small absorption coefficients.

The main advantages of laser spectroscopy are:
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- If a small portion of the laser beam is sent to a Fabry-Perot interferometer with a

separation 𝑑 between the mirrors, the PD3 photodiode measures peak value in

intensity whenever the laser frequency 𝜐𝐿 coincides with the maximum

transmission 𝜐 = Τ𝑚𝑐 2𝑑. These peaks can be used as a sort of wavelength

markers, which can be used to calibrate the separation between adjacent

spectral lines. With 𝑑 = 1 𝑚, the spectral separation between successive peaks

will be: Δ𝜈𝑃 =
𝑐

2𝑑
= 150 𝑀𝐻𝑧.

-

- In conditions of non-saturation, the Doppler broadening of a

molecular transition is the dominant spectral mechanism and, at

room temperature and at atmospheric pressure, it can reach values

of a few tens of GHz. The linewidth of a laser emission is typically a

few tens of MHz. This means that by varying the wavelength of

emission of the laser, it is possible to reconstruct the profile of the

absorption line of an optical transition with an extremely fine

spectral sampling.
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The simplest method for measuring the absorption spectrum of a gas species is to

determine the absorption coefficient 𝛼(𝜔) using the Lambert-Beer law:

𝐼𝑇 𝜔 = 𝐼0𝑒
−𝛼(𝜔)𝑥

which allows to calculate the radiation transmitted 𝐼𝑇 after passing through an optical

path of length 𝑥.

𝐼𝑇 𝜔 ≃ 𝐼0 1 − 𝛼 𝜔 𝑥

By measuring the intensity 𝐼0, the absorption coefficient can be retrieved

as:

𝛼 𝜔 =
𝐼0 − 𝐼𝑇 𝜔

𝑥𝐼0
=

Δ𝐼

𝑥𝐼0

where Δ𝐼 = 𝐼0 − 𝐼𝑇 𝜔 .

In the approximation of small absorptions 𝛼 𝜔 𝑥 ≪ 1, using the approximation
𝑒−𝛼(𝜔)𝑥 ≪ 1 − 𝛼 𝜔 𝑥, lambert-Beer's law can be reduced to:
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The absorption coefficient 𝛼𝑖𝑘 𝜔 of the transition | ۧ𝑖 → | ۧ𝑘 with absorption cross

section 𝜎𝑖𝑘(𝜔) is determined by the density of the absorbing molecules 𝑁𝑖 :

𝛼𝑖𝑘 𝜔 = 𝑁𝑖 −
𝑔𝑖
𝑔𝑘

𝑁𝑘 𝜎𝑖𝑘 𝜔 = Δ𝑁𝜎𝑖𝑘 𝜔

If 𝑁𝑘 is much smaller than 𝑁𝑖, it is possible to calculate the minimum detectable

density of absorbers 𝑁𝑖 over an optical absorption path 𝑥 = 𝐿:

𝑁𝑖 ≥
Δ𝐼

𝐼0𝐿𝜎𝑖𝑘 𝜔

The minimum detectable density of absorbers directly depends on:

a. the absorption cross section 𝜎𝑖𝑘

b. the length of the optical path 𝐿

c. the minimum detectable change in intensity
Δ𝐼

𝐼0
caused by

absorption.

𝛼 𝜔 =
Δ𝐼

𝑥𝐼0
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To achieve high detection sensitivities, 𝐿𝜎𝑖𝑘 must be as large as possible and the

minimum detectable value
Δ𝐼

𝐼0
as small as possible.

o Fluctuations in 𝐼0 that can be reduced using methods that increase the

stabilization of the intensity of a laser.

o The noise level of the photodetector.

The two main contributions that negatevely affect the accuracy of the measurement of
Δ𝐼

𝐼0
ar:

𝑁𝑖 ≥
Δ𝐼

𝐼0𝐿𝜎𝑖𝑘 𝜔

In the case of small absorptions, measuring
Δ𝐼

𝐼0
involves estimating small

differences 𝐼0 − 𝐼𝑇 of two large quantities 𝐼0 and 𝐼𝑇 .
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5.3.1 Amplitude modulation
Since the noise level of a photodetector affects the ultimate detection sensitivity, we

analyze the typical noise spectrum of a photodetector, i.e., the noise level as a function

of the working frequency. The typical spectrum of a detector is represented in Figure.

We observe that the noise level significantly decreases when the
photodetector operates at higher frequencies. For example, it is
reduced by several orders of magnitude when moving from
frequencies of the order of Hz up to frequencies of the order of kHz,
following indicatively the Flicker noise trend 1/𝑓.
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5.3.1 Amplitude modulation

This suggests that rather than working with a continuous-wave (CW) laser beam, it is
more convenient to modulate the light intensity at a certain frequency, and then to
filter the signal from the photodetector to extract only the spectral component at the
working frequency. This approach is called Amplitude Modulation Spectroscopy.

Source Photo 

Detector

Spectrum 

Analyzer

A typical apparatus for amplitude modulation spectroscopy is shown in Figure:
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5.3.1 Amplitude modulation

The laser beam with continuous emission is modulated in intensity using a mechanical

modulator (chopper) with a duty-cycle, typically, of 50 %. The light transmitted by the cell

containing the absorbent gas sample is sent to a photodetector, which generates an

electrical signal proportional to the concentration of the absorbent gas.

Being 𝛺 the modulation frequency, the light intensity incident on the
gas sample can be represented as a square wave at the 𝛺 frequency.

This means that in the Lamber-Beer equation for small absorptions,
𝐼𝑇 𝜔 = 𝐼0 1 − 𝛼 𝜔 𝑥 ], 𝐼0 has itself a square wave shape.

If the wavelength of the laser is fixed on the peak of the absorption line,
𝐼𝑇 will also be a square wave in the time domain as well as the signal 𝑆𝑇
acquired by the detector.

The signal is then sent to a spectrum analyzer that extracts the spectral component at the
frequency of modulation of the beam by a Fourier analysis of the input signal. An
alternative to the spectrum analyzer is a lock-in amplifier.
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5.3.1 Amplitude modulation

𝐼𝑇 𝑆𝑇

The detector signal 𝑆𝑇 is sent to a spectrum analyzer to extract only the component
at the 𝛺 frequency, i.e., at the modulation frequency of the laser intensity.

In the frequency domain, square waves with a duty cycle of 50% can be

expressed as a Fourier series:

𝜓𝑠𝑞𝑢𝑎𝑟𝑒 =
4

𝜋


𝑘=1

∞
ሿ𝑠𝑒𝑛ሾ 2𝑘 − 1 Ω𝑡

2𝑘 − 1

=
4

𝜋
𝑠𝑒𝑛 Ω𝑡 +

1

3
𝑠𝑒𝑛 3Ω𝑡 +

1

5
𝑠𝑒𝑛 5Ω𝑡 + ⋯
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5.3.1 Amplitude modulation

If only the spectral component of 𝐼𝑇 at the 𝛺 frequency is extracted,
𝐼𝑇/𝐼0 as a function of the frequency of the light will follow the trend of
the absorption coefficient 𝛼 𝜔 , as in the case of direct absorption with
the advantage of a significantly lower photodetector noise level.

Only the odd harmonics are present: the third one with amplitude equal to one third of
the fundamental, the fifth harmonic with amplitude equal to one fifth of the
fundamental, and so on.

𝛺

3𝛺
5𝛺

So, in the acquired spectrum there will be unwanted contributions even to the higher 
harmonics.
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5.3.2 Frequency modulation

Amplitude modulation involves the use of a mechanical modulator that hardly allows to
reach modulation frequencies > 5 KHz. At such frequencies, mechanical choppers tend
to suffer from frequency instabilities. In addition, they are bulky and noisy.

To overcome this issue, it is preferred to polarize the laser with a
direct current above the threshold and apply a modulation with
an amplitude such that the laser is always above the threshold.
This condition is known in the literature as dithering.

A simpler alternative is to modulate the laser current. If the injection current is
modulated with an amplitude such as to alternate at a frequency 𝛺 the
condition of laser on with that of laser off (laser below threshold), the result will
be identical to that of a mechanical modulator. However, this condition is not
advisable as abrupt variations in the current injected at such high frequencies
can lead to instability of the source generated by the alternation of heat
accumulation and subsequent dissipation.
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5.3.2 Frequency modulation

When a dither is applied, the square wave is not the best solution as we have seen that
there will be unwanted contributions to the higher harmonics as well.

For this reason, it is preferred to apply a sinusoidal dither at a frequency 𝛺, to have
only one contribution in frequency, without distortions due to higher harmonics.

Laser threshold

dither

DC current
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5.3.2 Frequency modulation

If the intensity of the laser varies linearly with the electric current, a sinusoidal dither

applied to the current will correspond to a modulation of the current at the same

frequency, without distortion. This is the case with laser diodes, in which above the

lasing threshold, the light intensity varies linearly with the injected current.

)𝑖 𝑡 = 𝑖DC + Δicos(Ω𝑡

and the laser intensity will vary with the same trend:

)𝐼0 𝑡 = 𝐼DC + ΔIcos(Ω𝑡

and simultaneously the emission frequency will be modulated at the

same frequency Ω :

)𝜔 𝑡 = 𝜔0 + Δ𝜔cos(Ω𝑡

Unfortunately, for diode lasers, the emission wavelength also varies linearly with the
electric current, as a result of the dependence of the refractive index on the
temperature of the active medium.

So, if we apply a dither of amplitude ∆𝑖 at the frequency Ω to the DC current 𝑖𝐷𝐶, with
∆𝑖 ≪ 𝑖𝐷𝐶, the instantaneous current will be (we neglect any type of phase shift):
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5.3.2 Frequency modulation

This technique is known as Frequency Modulation. In the literature, it is usually

referred a Frequency Modulation if Ω is in the range of MHz, while it is known as

Wavelength Modulation if Ω < 100 kHz.

In the case of small absorptions:

𝐼𝑇 𝜔 = 𝐼0 1 − 𝛼 𝜔 𝑥

Since the absorption coefficient is a function of frequency:

𝛼 𝜔 ∝

𝛾
2

2

𝜔 − 𝜔0
2 +

𝛾
2

2

If
Δ𝜔

𝜔0
≪ 1, a Taylor expansion around the central frequency 𝜔0 can

be performed, with the addiction of a contribution 𝛼0 that does not

depend, or weakly depends, on the frequency of the laser (for

example, absorption by optical surfaces) such that it can be

considered constant:
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5.3.2 Frequency modulation

𝛼 𝜔 𝑡 = 𝛼0 + ቤ
𝜕𝛼

𝜕𝜔
𝜔=𝜔0

Δ𝜔 cos Ω𝑡 +
1

2
อ

𝜕2𝛼

𝜕𝜔2

𝜔=𝜔0

Δ𝜔 2 cos2 Ω𝑡 +. . .

Inserting 𝐼0 𝑡 and the Taylor series expansion of

𝛼ሾ𝜔(𝑡)ሿ into the Lambert-Beer law for small

absorptions, we get:

𝐼𝑡 𝑡 = )𝐼DC + ΔIcos(Ω𝑡 1 − 𝐿 𝛼0 + ቤ
𝜕𝛼

𝜕𝜔
𝜔=𝜔0

Δ𝜔 cos Ω𝑡 +
1

2
อ

𝜕2𝛼

𝜕𝜔2

𝜔=𝜔0

Δ𝜔 2 cos2 Ω𝑡 +. . .

𝐼𝑇 𝜔 = 𝐼0 1 − 𝛼 𝜔 𝑥

)𝐼0 𝑡 = 𝐼DC + ΔIcos(Ω𝑡
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5.3.2 Frequency modulation

By developing the product, you get:

𝐼𝑡 𝑡

= 𝐼DC − 𝐿𝐼DC𝛼0 − 𝐿𝐼DC ቤ
𝜕𝛼

𝜕𝜔
𝜔=𝜔0

Δ𝜔 cos Ω𝑡

− 𝐿𝐼DC
1

2
อ

𝜕2𝛼

𝜕𝜔2

𝜔=𝜔0

Δ𝜔 2 cos2 Ω𝑡 +ΔI cos Ω𝑡 − L𝛼0ΔI cos Ω𝑡

− 𝐿ΔIΔ𝜔 ቤ
𝜕𝛼

𝜕𝜔
𝜔=𝜔0

cos2 Ω𝑡 +𝑂 cos3 Ω𝑡

• one not dependent on the frequency Ω

• one proportional to cos Ω𝑡

• one proportional to cos2 Ω𝑡

We observe that the intensity transmitted has three types of contribution: 
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5.3.2 Frequency modulation

If we acquire the only spectral component at the frequency Ω of the signal 𝐼𝑡 𝑡 and

suppose we filter all the others, we will have that:

ቚ𝐼𝑡 𝑡
𝑐𝑜𝑠Ωt

= ΔI 1 − L 𝛼0 − 𝐿𝐼DCΔ𝜔 ቤ
𝜕𝛼

𝜕𝜔
𝜔=𝜔0

By linearly varying 𝑖DC to spectrally scan the absorption line, we will have that |𝐼𝑡 𝑡 𝑐𝑜𝑠Ωt

will consists of two contributions:

- a constant contribution proportional to the derivative before the

absorption line.

- a constant contribution, ΔI 1 − L 𝛼0, not dependent on the shape of

the absorption line,

Assuming a Lorentzian lineshape, |𝐼𝑡 𝑡 𝑐𝑜𝑠Ωt will be:

This technique is known as wavelength modulation and 1f detection, as

you acquire the signal at the same frequency at which you modulate it.
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5.3.2 Frequency modulation

Working in these conditions, there are three major disadvantages:

3. Once the background contribution is removed, |𝐼𝑡 𝑡 𝑐𝑜𝑠Ωt = 0 at the

maximum absorption. This is not particularly useful for extracting

information about the concentration of the absorbent gas.

2. It is not background-free, which means that post-processing techniques must

be adopted to remove the contribution due to the background

𝜶 𝝎

𝜔0

𝜔0

𝒅𝜶 𝝎

𝒅𝝎

background

1. The acquired line shape is heavily distorted
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5.3.2 Frequency modulation

𝐼𝑡 𝑡 have components proportional to cos2 Ω𝑡 .

ቚ𝐼𝑡 𝑡
𝑐𝑜𝑠2Ωt

= −𝐿ΔIΔ𝜔 ቤ
𝜕𝛼

𝜕𝜔
𝜔=𝜔0

− 𝐿𝐼DC Δ𝜔 2
1

2
อ

𝜕2𝛼

𝜕𝜔2

𝜔=𝜔0

By scanning the absorption line of the absorbing gas, |𝐼𝑡 𝑡 𝑐𝑜𝑠2Ωt will
have two contributions: one proportional to the first derivative of the
lineshape and the other one proportional to the second derivative.

In other words, if we modulate the current of a laser diode at Ω, 𝐼𝑡 𝑡 will have
components at the fundamental and components at the first harmonic.

If we acquire only the components at the first harmonic, going to filter the fundamental
ones, the signal be in the form of:

From the trigonometry, we know that 𝑐𝑜𝑠2 Ω𝑡 =
1+cos(2Ω𝑡)

2
, so 𝑐𝑜𝑠2 Ω𝑡 -component

are proportional to the first harmonic (2Ω).
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5.3.2 Frequency modulation

Assuming that the absorption lineshape is Lorentzian one, the second derivative will have 

the form:

𝜶 𝝎

𝜔0
𝜔0

𝒅𝟐𝜶 𝝎

𝒅𝝎𝟐

The central peak is at the maximum of the absorption; there are two
symmetrical lobes of opposite sign on two sides with respect to the
central peak.

This technique is known as wavelength modulation and 2f detection: the laser is
modulated at a frequency Ω and the signal acquired at the first harmonic 2Ω.
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5.3.2 Frequency modulation
Adding the contribution due to the first derivative, it is easy to verify that the resulting
effect will be to make the two lateral lobes asymmetrical, without altering the intensity of
the central peak, since the first derivative before a Lorentzian function is zero at the
maximum absorption, and changes sign depending on the side.

𝜔0

For this reason, the contribution due to the first derivative is known as

Residual Amplitude Modulation (RAM). In conclusion, working in wavelength

modulation and 2f detection alters the shape of the absorption line, but the

maximum signal is still at the maximum absorption. The great advantage lies

in the fact that the technique is background-free, eliminating all the

inconvenient introduced in post-processing to remove the background

contribution from the signal.

𝜔0
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5.3.3 Lock-in Detection

Working in amplitude or frequency modulation requires that the signal acquired by the
photodetector is sent to a spectrum analyzer to extract the desired component (the
fundamental or the first harmonic).

A lock-in amplifier is an instrument used for the analysis of AC signals of low

intensity, up to nV or characterized by high background noise, which can sometimes

be even higher than the intensity of the signal itself.

The principle of operation is based on the extraction from the input

signal, typically noisy, only the component with the desired frequency

and phase, going to filter the remaining components, whose

contribution of noise is then canceled. The technique is therefore called

Phase-Sensitive Detection (PSD) and allows to measure the amplitude of

the only desired component.

Spectrum analyzers are expensive and require complex computational processing, based
on the Fourier transform. The same functions of filtering a single component from an
analog signal can be performed using a lock-in amplifier.
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Figure shows the block diagram of a typical lock-in amplifier.

• Voltage Controlled Oscillator (V.C.O.): Typically, an oscillator, or

waveform generator, adjustable in frequency and phase and used to

generate the reference signal (in commercial amplifiers it is usually

integrated).

The structure consists of:

• Phase-Sensitive Detector (P.S.D.): composed of the multiplier of

electrical signals (Multiplier) and the low-pass filter with adjustable

threshold;

• DC amplifier: DC signal amplifier used to amplify the output signal

from the PSD in a controlled way.

5.3.3 Lock-in Detection
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To evaluate the principle of operation of the PSD, the heart of the lock-in technique, let

us consider the reference signal 𝑉𝑟𝑒𝑓 as a periodic signal that can be represented as a

sine wave of frequency Ω𝑟𝑒𝑓,

𝑉𝑟𝑒𝑓 = 𝐴𝑟𝑒𝑓𝑐𝑜𝑠 Ω𝑟𝑒𝑓𝑡 + 𝜑𝑟𝑒𝑓

and the signal to be measured 𝑉𝑠𝑖𝑔𝑛 as

𝑉𝑠𝑖𝑔 = 𝐴𝑠𝑖𝑔𝑐𝑜𝑠 Ω𝑠𝑖𝑔𝑡 + 𝜑𝑠𝑖𝑔 + 

Ω𝑛𝑜𝑖𝑠𝑒

𝐴𝑠𝑖𝑔𝑛𝑐𝑜𝑠 Ω𝑛𝑜𝑖𝑠𝑒𝑡 + 𝜑𝑛𝑜𝑖𝑠𝑒

which can be expanded in the Fourier series as the superposition

of a sinusoidal signal at the frequency Ω𝑠𝑖𝑔, to be extracted, with

all the other spectral components that are the background noise

to be subtracted.

5.3.3 Lock-in Detection
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The signals 𝑉𝑟𝑒𝑓 and 𝑉𝑠𝑖𝑔 are then multiplied each other. Then, the signal at the exit

of the multiplier we be:

𝑉𝑟𝑒𝑓 × 𝑉𝑠𝑖𝑔
= 𝐴𝑟𝑒𝑓𝐴𝑠𝑖𝑔𝑐𝑜𝑠 Ω𝑟𝑒𝑓𝑡 + 𝜑𝑟𝑒𝑓 𝑐𝑜𝑠 Ω𝑠𝑖𝑔𝑡 + 𝜑𝑠𝑖𝑔

+ 𝐴𝑟𝑒𝑓𝑐𝑜𝑠 Ω𝑟𝑒𝑓𝑡 + 𝜑𝑟𝑒𝑓 

𝜔𝑛𝑜𝑖𝑠𝑒

𝐴𝑛𝑜𝑖𝑠𝑒𝑐𝑜𝑠 Ω𝑛𝑜𝑖𝑠𝑒𝑡 + 𝜑𝑛𝑜𝑖𝑠𝑒

Using the trigonometric relation 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 =
1

2
cos 𝛼 + 𝛽 + cos 𝛼 − 𝛽 :

𝑉𝑟𝑒𝑓 × 𝑉𝑠𝑖𝑔

=
1

2
𝐴𝑟𝑒𝑓𝐴𝑠𝑖𝑔൛

ൟ

cos Ω𝑠𝑖𝑔 + Ω𝑟𝑒𝑓 𝑡 + 𝜑𝑠𝑖𝑔 + 𝜑𝑟𝑒𝑓

+ cos Ω𝑠𝑖𝑔 − Ω𝑟𝑒𝑓 𝑡 + 𝜑𝑠𝑖𝑔 − 𝜑𝑟𝑒𝑓

+
1

2
𝐴𝑟𝑒𝑓 ൝

ൡ



𝜔𝑛𝑜𝑖𝑠𝑒

𝐴𝑛𝑜𝑖𝑠𝑒 ቂ

ቃ

cos Ω𝑟𝑒𝑓 + Ω𝑛𝑜𝑖𝑠𝑒 𝑡 + 𝜑𝑟𝑒𝑓 + 𝜑𝑛𝑜𝑖𝑠𝑒

+ 𝑐𝑜𝑠 Ω𝑟𝑒𝑓 − Ω𝑛𝑜𝑖𝑠𝑒 𝑡 + 𝜑𝑟𝑒𝑓 − 𝜑𝑛𝑜𝑖𝑠𝑒

5.3.3 Lock-in Detection
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As a result, all the terms are canceled, except for those that the frequencies of the two

signals coincide, namely Ω𝑠𝑖𝑔 = Ω𝑟𝑒𝑓; similarly for the noise contribution, Ω𝑟𝑒𝑓 = Ω𝑛𝑜𝑖𝑠𝑒.

The output signal from the multiplier is sent to the low-pass filter, which is set to a
cutting frequency that only the continuous component of the signal pass through:

𝑉𝑟𝑒𝑓 × 𝑉𝑠𝑖𝑔

=
1

2
𝐴𝑟𝑒𝑓𝐴𝑠𝑖𝑔൛

ൟ

cos Ω𝑠𝑖𝑔 + Ω𝑟𝑒𝑓 𝑡 + 𝜑𝑠𝑖𝑔 + 𝜑𝑟𝑒𝑓

+ 𝒄𝒐𝒔 𝜴𝒔𝒊𝒈 −𝜴𝒓𝒆𝒇 𝒕 + 𝝋𝒔𝒊𝒈 −𝝋𝒓𝒆𝒇

+
1

2
𝐴𝑟𝑒𝑓 ൝

ൡ



𝜔𝑛𝑜𝑖𝑠𝑒

𝐴𝑛𝑜𝑖𝑠𝑒 ቂ

ቃ

cos Ω𝑟𝑒𝑓 + Ω𝑛𝑜𝑖𝑠𝑒 𝑡 + 𝜑𝑟𝑒𝑓 + 𝜑𝑛𝑜𝑖𝑠𝑒

+ 𝒄𝒐𝒔 𝜴𝒓𝒆𝒇 −𝜴𝒏𝒐𝒊𝒔𝒆 𝒕 + 𝝋𝒓𝒆𝒇 −𝝋𝒏𝒐𝒊𝒔𝒆

5.3.3 Lock-in Detection
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𝑉𝑃𝑆𝐷 =
1

2
𝐴𝑟𝑒𝑓𝐴𝑠𝑖𝑔 cos 𝜑𝑠𝑖𝑔 − 𝜑𝑟𝑒𝑓 +

1

2
𝐴𝑟𝑒𝑓𝐴𝑛𝑜𝑖𝑠𝑒 cos 𝜑𝑟𝑒𝑓 − 𝜑𝑛𝑜𝑖𝑠𝑒

As a result, the system is sensitive to the phase difference between the signal to be

measured and the reference signal. In addition, the generated signal 𝑉𝑃𝑆𝐷 is affected

only by the noise component at the reference frequency.

𝑉𝑜𝑢𝑡 ∝ 𝐴𝑠𝑖𝑔cos𝜑

where 𝜑 = 𝜑𝑠𝑖𝑔 − 𝜑𝑟𝑒𝑓

Thus, the output of the lock-in amplifier will be:

By knowing the amplitude of the reference signal (𝐴𝑟𝑒𝑓 ) it is possible to retrieve

the 𝐴𝑠𝑖𝑔 measurement; in addition, it is possible to determine the phase of the

signal with respect to the reference.

The final result at the output of the low-pass filter will be:

5.3.3 Lock-in Detection



5.3 MODULATION TECHNIQUES

32
SPETTROSCOPIA 

LASER

This dependence on the phase difference between the two signals can be eliminated by

using a dual-phase lock-in amplifier.

A dual-phase lock-in has an additional PSD that measures the
quadrature component of the signal , i.e. the signal component at 90°

compared to that measured by the first channel.

The figure shows the block diagram of a dual-phase lock-in amplifier.

5.3.3 Lock-in Detection



5.3 MODULATION TECHNIQUES

33
SPETTROSCOPIA 

LASER

In this way, simultaneous measurement of the amplitude and phase of the signal is

possible.

𝑉𝑞𝑢𝑎𝑑 = 𝐴𝑞𝑢𝑎𝑑𝑐𝑜𝑠 Ω𝑟𝑒𝑓𝑡 + 𝜑𝑟𝑒𝑓 +
𝜋

2

Repeating the same steps made previously, the output signal from the second PSD will

be:

𝑉𝑞𝑢𝑎𝑑 × 𝑉𝑠𝑖𝑔

=
1

2
𝐴𝑠𝑖𝑔𝐴𝑞𝑢𝑎𝑑 cos 𝜑𝑠𝑖𝑔 − 𝜑𝑟𝑒𝑓 +

𝜋

2

+
1

2
𝐴𝑞𝑢𝑎𝑑𝐴𝑛𝑜𝑖𝑠𝑒 cos 𝜑𝑟𝑒𝑓 − 𝜑𝑛𝑜𝑖𝑠𝑒 +

𝜋

2

=
1

2
𝐴𝑠𝑖𝑔𝐴𝑞𝑢𝑎𝑑 sen 𝜑𝑠𝑖𝑔 − 𝜑𝑟𝑒𝑓 +

1

2
𝐴𝑞𝑢𝑎𝑑𝐴𝑛𝑜𝑖𝑠𝑒 sen 𝜑𝑟𝑒𝑓 − 𝜑𝑛𝑜𝑖𝑠𝑒

Assuming then that the quadrature component has the form:

5.3.3 Lock-in Detection
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At the output of the low-pass filter the overall signal will be:

𝑉𝑃𝑆𝐷2 =
1

2
𝐴𝑞𝑢𝑎𝑑𝐴𝑠𝑖𝑔 sen 𝜑𝑠𝑖𝑔 − 𝜑𝑟𝑒𝑓 +

1

2
𝐴𝑞𝑢𝑎𝑑𝐴𝑛𝑜𝑖𝑠𝑒 sen 𝜑𝑟𝑒𝑓 − 𝜑𝑛𝑜𝑖𝑠𝑒

Finally, at the output of the dual-phase lock-in

amplifier, neglecting the contribution of noise, two

signals are obtained:
𝑋 ∝ 𝐴𝑠𝑖𝑔cos𝜑

𝑌 ∝ 𝐴𝑠𝑖𝑔sen𝜑

the first is called a in-pahse signal, since it is maximized when the phase difference 𝜑

is zero, while the second represents the quadrature component.

𝑅 = 𝑋2 + 𝑌2 ∝ 𝐴𝑠𝑖𝑔

𝑅 is proportional to the amplitude of the component Ω𝑠𝑖𝑔 of the

acquired signal.

𝜑 = 𝑎𝑟𝑐𝑡𝑔
𝑌

𝑋

The, the amplitude R of the signal and the phase 𝜑 can be easily calculated by using 
the relations:

𝑋

𝑌

5.3.3 Lock-in Detection
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The amplitude or frequency modulation techniques involve the modulation of the laser

source and the demodulation of the photodetector signal. These approaches allow an

increase of the detection sensitivity as a consequence of the reduction of the noise of

the photodetector itself.

The Lambert-Beer law clearly expresses the dependence of the intensity
transmitted by the optical path.
Allowing radiation to travel longer distances allows the possibility to detect
small concentrations of absorbing molecules and thus to increase the ultimate
sensitivity of detection.
Obviously, it is unthinkable to build gas cells with lengths of several meters.

The correct approach is to increase the total optical path by forcing

the radiation to remain confined within small and constant volume.

That is why modulation techniques can be coupled with other

spectroscopy techniques that are focused on the increase the optical

pathway.

Modulation techniques are therefore not related to the gas-radiation interaction.

𝑁𝑖 ≥
Δ𝐼

𝐼0𝐿𝜎𝑖𝑘 𝜔
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- By means of optical cavities. The laser beam

introduced into the cavity always travels the same

optical path through multiple reflections on highly

reflective mirrors, until a standing wave is formed

inside it.

This can be accomplished in two ways:

The most used multistep cells are of two types:

- White Multipass Cell

- Herriott Multipass Cell

- Through multiple reflections between two large

convex mirrors positioned opposite each other, so

that with each reflection on a mirror the beam travels

a different optical path to reach the other mirror.

Cells of this type are called multipass cells.

5.4 SPECTROSCOPY WITH MULTIPASS CELLS
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5.4.1 White Multipass Cell

White Multipass Cell consists of three spherical, concave mirrors with the same radius

of curvature.

Two mirrors 𝐴 and 𝐴′ are next to each other and form one end of the
absorption cell; mirror 𝐵 is placed at the other end of the cell. The
centers of curvature of 𝐴 and 𝐴′ lie on the surface of 𝐵, and the
center of curvature of 𝐵 is between mirror 𝐴 and 𝐴′.

A

A’

B

The principle of operation of such a multi-pass system for a beam of light is easily
obtained through the use of geometric optics.

5.4 SPECTROSCOPY WITH MULTIPASS CELLS
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This arrangement creates a system of conjugated points on the reflective
surfaces of the mirrors, according to which all the light that leaves at any
point 𝐴 is focused from 𝐵 to the corresponding point on 𝐴′ , and all the
light that leaves 𝐴′ from this point is focused backwards on the original
point of 𝐴.

With these rules, let's see how you can use a multipass cell to

achieve long optical paths.

A

A’

B

5.4.1 White Multipass Cell
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The positions of subsequent images can all be identified by the rule that the points of
the object and the image near the center of curvature of a spherical mirror are always
on a straight line whose midpoint falls on the center of curvature.

Thus, mirror 𝐴 forms an image 1 of the input slit on the surface of 𝐵 distant from
the center of curvature of 𝐴, as far as the input slit is distant from the center of
curvature of 𝐴.

A

A’

B

center of curvature of A in B

1

Then, since the center of curvature of 𝐵 is between 𝐴 and 𝐴′ , 𝐵 forms an image 
of 𝐴 in 𝐴′ . 

input slit

5.4.1 White Multipass Cell
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Then, the mirror 𝐴′ forms in 𝐵 a second image 2 of the input slit, whose position is
determined by the distance between 1 and the radius of curvature of 𝐴′ .

A

A’

B

center of curvature of A’ in B

1

input slit

2

Mirror 𝐵 will form an image of 𝐴′ in 𝐴 and then a will form an image 3 of the slit in 𝐵

A

A’

B

1

input slit

2

3

5.4.1 White Multipass Cell
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Image 3 will be sent back to 𝐴′ to get out the pair of mirrors. 

A

A’

B

1

input slit

3

exit slit

2

The resulting optical path is the one determined in Figure.

center of curvature of A

center of curvature of A’

5.4.1 White Multipass Cell
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5.4.1 White Multipass Cell
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• Light is injected into the multi-pass cell out of the optical axis of the system (off-axis).

The ratio of the length of B to this separation determines honw many
times light passes through the cell. These can be 4 if you form a single
image on B, 8 in the case of three images, 12 in the case of 5 images, 14
for 7 images and so on. Intermediate numbers are not possible.

• It is easy to verify that a White multi-pass cell allows the use of beams with large

numerical aperture, if you do not impact the edges of the mirror.

• The optical alignment of the system is not critical: it can be done manually, without

using micrometric movements.

• The most critical point is the separation of the centers of curvature of mirrors A and

A' on B: if A and A' are adjusted symmetrically with respect to B and its center of

curvature, each image on B is separated from adjacent ones exactly by the distance

between the centers of curvature of A and A'.

5.4.1 White Multipass Cell
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5.4.2 Herriott Multipass Cell

A Herriott cell consists of a spherical mirrors (M1 and M2) positioned on opposite

sides, on the same optical axis.

The laser beam enters the cell through an opening created on one of
the two mirrors and comes out either from the same opening, or from
another opening created on the mirror M1.

When the laser beam is introduced inside the cell in a direction not
parallel to the optical axis, the reflection spots on the mirrors form a
pattern that are arranged in such a way as to form an ellipse.

5.4 SPECTROSCOPY WITH MULTIPASS CELLS
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The conditions for a good alignment of a multi-pass cell must are mainly two:

1) Beams must not overlap each other, to

avoid interference effects;

2) After a series of 𝑛 reflections the system must return to its initial

conditions. In addition, the system must be closed and not diverge, to

avoid the escape of the radiation from the system.

A multipass cell can be modelled by using geometric optics, in paraxial

approximation.

For the mathematical description of the system, it is possible to use

the ABCD matrices formalism.

5.4.2 Herriott Multipass Cell
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The ABCD matrix formalism of Gaussian optics involves the introduction of the complex

radius of curvature 𝑞(𝑧), where 𝑧 is the direction of propagation of the wave, which

contains information about both the real radius of curvature 𝑅(𝑧) and the beam diameter

𝑤 𝑧 ,by the relation:

1

)𝑞(𝑧
=

1

)𝑅(𝑧
− 𝑖

𝜆

)𝜋𝑤2(𝑧

where 𝜆 is the wavelength.

Knowing 𝑞1 at a certain point in space, 𝑞2 will be expressed as:

𝑞2 =
𝐴𝑞1 + 𝐵

𝐶𝑞1 + 𝐷

The formalism of ABCD matrices allows to calculate how the radius of complex
curvature evolves as the wave propagates.

Each interaction of the beam with an optical element (mirror, lens...) or a

propagation can be associated with a transformation matrix
𝐴 𝐵
𝐶 𝐷

that

allows to estimate the evolution of 𝑞(𝑧) in space.

5.4.2 Herriott Multipass Cell
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If the wave propagates for a path 𝑑, the transformation matrix for the complex radius of

curvature will be:

𝐴 𝐵
𝐶 𝐷

=
1 𝑑
0 1

If the wave experiences a reflection to a convex mirror with a radius of curvature 𝑅:

𝐴 𝐵
𝐶 𝐷

=
1 0

−
2

𝑅
1

If the wave passes through a converging lens of focal length 𝑓:

𝐴 𝐵
𝐶 𝐷

=

1 0

−
1

𝑓
1

If the wave passes through several situations in succession, the total
transformation matrix will be the row-by-column multiplication of the
individual transformation matrices.

5.4.2 Herriott Multipass Cell
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The situation inside the cell can be split into two distinct steps: a free propagation in

the space that separates the two mirrors and a reflection on the spherical mirror.

Considering a cavity in which the two mirrors are at a distance 𝐿 and have a radius of

curvature 𝑅, the ABCD matrix of the system, in paraxial approximation, will be:

𝐴 𝐵
𝐶 𝐷

=
1 0

−
2

𝑅
1

∙
1 𝐿
0 1

𝐿

5.4.2 Herriott Multipass Cell
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Once the XY plane has been identified as the plane orthogonal to the optical axis of the
cell, 𝑥𝑛 and 𝑦𝑛 are the positions on the XY plane of the beam spot at the point where it
is reflected by the mirror, at the 𝑛-th passage.

𝑥′𝑛 and 𝑦′𝑛 indicate the angles of reflection. 

The optical pathlength in the cell, at the 𝑛-th passage will be indicated as
𝑑𝑛.

In paraxial approximation, 𝐿 ≈ 𝑑𝑛.

5.4.2 Herriott Multipass Cell
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To calculate the positions in which the rays inside the cell are reflected, and therefore

the relative pattern, it is necessary to solve the systems:

𝑥𝑛+1
𝑥𝑛+1′

=
𝐴 𝐵
𝐶 𝐷

𝑥𝑛
𝑥𝑛′

𝑦𝑛+1
𝑦𝑛+1′

=
𝐴 𝐵
𝐶 𝐷

𝑦𝑛
𝑦𝑛′

Substituting the ABCD matrix written above is:

ቐ
𝑥𝑛+1 = 𝑥𝑛 + 𝐿 𝑥𝑛′

𝑥𝑛+1
′ = ൗ−2

𝑅 𝑥𝑛 + ( ൗ−2𝐷
𝑅 + 1) 𝑥𝑛′

Similarly, it will be for 𝑦𝑛+1 and 𝑦𝑛+1
′

The approach to the problem can be either analytical (going to solve

the problem considering that the ABCD matrix is multiplied 𝑚 times by

itself), or iterative.

𝐴 𝐵
𝐶 𝐷

=
1 0

−
2

𝑅
1

∙
1 𝐿
0 1

5.4.2 Herriott Multipass Cell
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After 𝑛 reflections, the coordinates 𝑥𝑛+1 and 𝑥′𝑛+1 will be:

In the analytical approach, it is necessary to solve the matrix system: 

𝑥𝑛+1
𝑥′𝑛+1

=
𝐴 𝐵
𝐶 𝐷

𝑛 𝑥𝑛
𝑥′𝑛

ቊ
𝑥𝑛+1 = 𝐴𝑥𝑛 + 𝐵𝑥′𝑛
𝑥′𝑛+1 = 𝐶𝑥𝑛 + 𝐷𝑥′𝑛

We determine the equation that governs the dynamics for 𝑥𝑛+1 by removing the

explicit dependence on the angle.

From the first equation we get:

𝑥′𝑛 =
𝑥𝑛+1 − 𝐴𝑥𝑛

𝐵

We replace 𝑛 → 𝑛 + 1:

𝑥′𝑛+1 =
𝑥𝑛+2 − 𝐴𝑥𝑛+1

𝐵

5.4.2 Herriott Multipass Cell
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Replace:

𝑥′𝑛 =
𝑥𝑛+1 − 𝐴𝑥𝑛

𝐵

and you get:

𝑥′𝑛+1 =
𝑥𝑛+2 − 𝐴𝑥𝑛+1

𝐵

in: 𝑥′𝑛+1 = 𝐶𝑥𝑛 + 𝐷𝑥′𝑛

𝑥𝑛+2 = 𝐴 + 𝐷 𝑥𝑛+1 + (BC − AD)𝑥𝑛

Introduce: 𝑏 =
𝐴 + 𝐷

2

and we note that 𝐴𝐷 − 𝐵𝐶 is the determinant of the ABCD matrix:

𝑴 =
𝐴 𝐵
𝐶 𝐷

Therefore:

𝑥𝑛+2 = 2𝑏𝑥𝑛+1 − 𝐹2𝑥𝑛

𝐹2 = detሾ𝑴ሿ
with:

5.4.2 Herriott Multipass Cell
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𝑥𝑛+2 = 2𝑏𝑥𝑛+1 − 𝐹2𝑥𝑛

A periodic solution of the equation must now be determined.

We show that the geometric solution:

𝑥𝑛 = 𝑥0ℎ
𝑛

with constant ℎ meets the requirement of a periodic solution.

Imposing it as a solution:

𝑥0ℎ
𝑛+2 = 2𝑏𝑥0ℎ

𝑛+1 − 𝐹2𝑥0ℎ
𝑛

we get the condition for ℎ:

ℎ2 − 2𝑏ℎ + 𝐹2 = 0

This can be solved in the variable ℎ:

ℎ = 𝑏 ± 𝑖 𝐹2 − 𝑏2

5.4.2 Herriott Multipass Cell
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ℎ = 𝑏 ± 𝑖 𝐹2 − 𝑏2

This can be rewritten in a more elegant way by introducing the variable:

𝜑 = 𝑐𝑜𝑠−1
𝑏

𝐹

so that:
𝑏 = 𝐹𝑐𝑜𝑠𝜑

𝐹2 − 𝑏2 = 𝐹2 − 𝐹2𝑐𝑜𝑠2𝜑 = 𝐹𝑠𝑒𝑛𝜑

Substituting it in the roots:

ℎ = 𝐹 𝑐𝑜𝑠𝜑 ± 𝑖𝑠𝑒𝑛𝜑

giving as solution:

𝑥𝑛 = 𝑥0𝐹
𝑛𝑒±𝑖𝑚𝜑 𝑥𝑛 = 𝑥0ℎ

𝑛

5.4.2 Herriott Multipass Cell

5.4 SPECTROSCOPY WITH MULTIPASS CELLS
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The condition to be imposed is:
𝜑 = 𝑐𝑜𝑠−1

𝑏

𝐹𝑏

𝐹
≤ 1

Since 𝐹2 = detሾ𝑴ሿ : 

det 𝑴 = 𝑑𝑒𝑡
𝐴 𝐵
𝐶 𝐷

= 𝑑𝑒𝑡
1 0

−
2

𝑅
1

∙ 1 𝐿
0 1

= 𝑑𝑒𝑡
1 𝐿

−
2

𝑅
−
2

𝑅
𝐿 + 1

= −
2

𝑅
𝐿 + 1 − −

2

𝑅
𝐿 = 1

So the condition to be imposed is:

𝑏 ≤ 1

1

2
𝐴 + 𝐷 ≤ 1 → 1 − ൗ𝐿 𝑅 ≤ 1

leading to:

𝑏 =
𝐴 + 𝐷

2

𝐿 ≤ 2𝑅

5.4.2 Herriott Multipass Cell

5.4 SPECTROSCOPY WITH MULTIPASS CELLS
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So, if the positions of the spots on the mirror are repeated after 𝑚 cycles, the total

number of reflections will be equal to 2𝑚 before the beam leaves the multipass cell.

Thus, the total optical path will be equal to 2𝑚𝐿.

5.4.2 Herriott Multipass Cell

5.4 SPECTROSCOPY WITH MULTIPASS CELLS
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Advantages of Herriott cell:

- The total optical path depends only on the distance between the two mirrors

- The cell structure is simple, consisting of two mirrors aligned on the same optical axis

- Opto-mechanical stability is very good

Disadvantages:

- It does not accept beams with large numerical apertures

- A large part of the mirror surface is not used

- Large mirrors are needed to make long optical paths.

5.4.2 Herriott Multipass Cell

5.4 SPECTROSCOPY WITH MULTIPASS CELLS
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5.5.1 Longitudinal modes of cavities

A different way to increase the optical path is to place the gas sample inside a resonant

optical cavity. The light transmitted by the cavity will be related to the leaks in the

cavity. Losses in cavities will be due to optical absorption that can be estimated by

analyzing the transmitted light.

Consider the simple case of a linear cavity consisting of two mirrors.
The amount of light reflected and transmitted by the cavity depends
mainly on the frequency of the incident beam and the reflectivity and
transmittivity of the two mirrors.

According to classical physics, the standing waves created inside the cavity can be

seen as an overlap of waves traveling back and forth as a result of reflection to the

mirrors, so the final optical path is a multiple of the physical length of the cavity. The

resulting effect is an increase in optical power inside the cavity due to the

constructive overlap of waves propagating back and forth.

According to quantum mechanics, a photon travels 𝑞 times back and forth

between mirrors before leaving the cavity. Thus, the single photon has a 𝑞

times higher probability of being absorbed by the gas sample.
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5.5.1 Longitudinal modes of cavities

A cavity is an optical resonator in which the electromagnetic field inside the cavity is
excited (and therefore increases in amplitude) by incident light at certain frequencies,
called resonance frequencies of the cavity.

Let us consider only the cavity resonances associated with the TEMnm

cavity modes, so-called longitudinal modes because the wave vector of
propagation of the wave remains parallel to the optical axis of the cavity
(𝑧 axis) during reflections, with electric and magnetic field aligned in the
transverse plane to the direction of propagation.

z

y

x
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5.5.1 Longitudinal modes of cavities

For TEMnm modes, the distribution of the electric field can be described as the product of

two Hermite polynomials of order 𝑛 and 𝑚 (non-negative integers, corresponding to the 𝑥

and 𝑦 directions, respectively) and two Gaussian functions. It follows that the intensity

distribution of these modes has 𝑛 nodes in the 𝑥 direction and 𝑚 nodes in the 𝑦 direction.

𝐸𝑛𝑚 𝑥, 𝑦, 𝑧 ∝ 𝐻𝑛 𝑥 𝐻𝑚 𝑦 𝑒
−

𝑥2

𝑤2(𝑧)𝑒
−

𝑦2

𝑤2(𝑧)

where 𝐻𝑛 𝑥 and 𝐻𝑚 𝑦 are the

Hermite polynomials and 𝑤(𝑧) is

the waist of the beam within the

cavity.
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5.5.1 Longitudinal modes of cavities

The mode 𝑛 = 𝑚 = 0 is known as the fundamental mode and the distribution of the

intra-cavity intensity resembles a Gaussian distribution. The other modes are called

higher-order modes. For simplicity, we will consider on only the TEM00 inside the

cavity.

As for cavity frequency selectivity, this can be

obtained by considering the cavity as a Fabry-

Perot resonator: the waves that can propagate

inside the cavity are those that have minimal

losses at reflection on the mirrors, namely all the

waves whose wavelength satisfies the condition:

𝜆𝑛 =
2𝑛𝑟𝐿

𝑛

where 2𝐿 is the length of a round trip
and 𝑛𝑟 is the refractive index of the
cavity medium.
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5.5.1 Longitudinal modes of cavities

In the frequency domain:

𝜐𝑛 =
𝑛𝑐

2𝑛𝑟𝐿

where 𝑐 is the speed of light.

The spectral distance between two consecutive modes (𝑛 and 𝑛 + 1) is

known as Free Spectral Range (FSR) of the cavity:

𝐹𝑆𝑅 =
𝑐

2𝑛𝑟𝐿

Structure of longitudinal modes of cavity

∆𝜐 = 𝑐/2𝐿

Frequency

In
te

n
si

ty
𝜆𝑛 =

2𝑛𝑟𝐿

𝑛
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5.5.2 Finesse and spectral bandwidth

Let's determine the spectral characteristics of the cavity. Suppose a monochromatic

wave with Gaussian profile along the transverse directions 𝑥 and 𝑦, incident along the

optical axis 𝑧:

𝐸𝑖𝑛 𝑥, 𝑦, 𝑧, 𝑡 = 𝐸0 𝑥, 𝑦 𝑒 )𝑖(𝜔𝑡−𝑘𝑧

 

Let’s suppose the two mirrors are identical, so they have the same reflectivity 𝑅 and

the same transmittivity 𝑇. The beam is transmitted by the first mirror and when it

reaches the second mirror, the resulting wave will be:

𝐸0 𝑥, 𝑦 𝑇𝑒 )𝑖(𝜔𝑡−𝑘𝑧 𝑒−𝑖𝜔
𝐿
𝑐
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The wave is reflected by the second mirror, retraces the cavity to be reflected by the

first mirror, retraces the cavity and then reaches the second mirror again. This is the

first round-trip and the field will be the sum between:

𝐸0 𝑥, 𝑦 𝑇𝑒 )𝑖(𝜔𝑡−𝑘𝑧 𝑒−𝑖𝜔
𝐿
𝑐 1 + 𝑅2𝑒−𝑖𝜔2

𝐿
𝑐

Then, after 𝑝 round-trip, the field inside the cavity will be:

𝐸0 𝑥, 𝑦 𝑇𝑒 )𝑖(𝜔𝑡−𝑘𝑧 𝑒−𝑖𝜔
𝐿
𝑐

𝑝

𝑅2𝑒−𝑖𝜔2
𝐿
𝑐

𝑝

With a high number of round-trips, namely 𝑝 → ∞ , the intra-cavity field

becomes:

𝐸0 𝑥, 𝑦 𝑇𝑒 )𝑖(𝜔𝑡−𝑘𝑧 𝑒−𝑖𝜔
𝐿
𝑐 

𝑝=0

∞

𝑅2𝑒−𝑖𝜔2
𝐿
𝑐

𝑝

5.5.2 Finesse and spectral bandwidth
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If the field is transmitted by the second mirror after an infinite number of round trips:

𝐸𝑜𝑢𝑡 = 𝐸0 𝑥, 𝑦 𝑇2𝑒 )𝑖(𝜔𝑡−𝑘𝑧 𝑒−𝑖𝜔
𝐿
𝑐 

𝑝=0

∞

𝑅2𝑒−𝑖𝜔2
𝐿
𝑐

𝑝

It is worth noticing that the series is convergent because 𝑅 < 1. For for 𝑝 → ∞:



𝑝=0

∞

𝑅2𝑒−𝑖𝜔2
𝐿
𝑐

𝑝

=
1

1 − 𝑅2𝑒−𝑖𝜔2
𝐿
𝑐

Replacing:

𝐸𝑜𝑢𝑡 = 𝐸0 𝑥, 𝑦 𝑒 )𝑖(𝜔𝑡−𝑘𝑧
𝑇2𝑒−𝑖𝜔

𝐿
𝑐

1 − 𝑅2𝑒−𝑖𝜔2
𝐿
𝑐

= 𝐸𝑖𝑛 𝑥, 𝑦, 𝑧, 𝑡
𝑇2𝑒−𝑖𝜔

𝐿
𝑐

1 − 𝑅2𝑒−𝑖𝜔2
𝐿
𝑐

5.5.2 Finesse and spectral bandwidth
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The intensity is equal to:

𝐼𝑜𝑢𝑡 = 2𝑐𝜀0𝐸𝑜𝑢𝑡𝐸𝑜𝑢𝑡
∗

Being 𝜏 = 2
𝐿

𝑐
we have:

𝐼𝑜𝑢𝑡 = 2𝑐𝜀0𝑇
4 𝐸𝑖𝑛

2
𝑒−𝑖𝜔

𝜏
2

1 − 𝑅2𝑒−𝑖𝜔𝜏
∙

𝑒𝑖𝜔
𝜏
2

1 − 𝑅2𝑒𝑖𝜔𝜏

= 2𝑐𝜀0𝑇
4 𝐸𝑖𝑛

2
1

1 − 𝑅2𝑒−𝑖𝜔𝜏 − 𝑅2𝑒𝑖𝜔𝜏 + 𝑅4

= 2𝑐𝜀0𝑇
4 𝐸𝑖𝑛

2
1

1 + 𝑅4 − 2𝑅2𝑐𝑜𝑠𝜔𝜏

= 2𝑐𝜀0𝑇
4 𝐸𝑖𝑛

2
1

1 + 𝑅4 − 2𝑅2 + 2𝑅2 − 2𝑅2𝑐𝑜𝑠𝜔𝜏

= 2𝑐𝜀0𝑇
4 𝐸𝑖𝑛

2
1

)1 − 𝑅2 2 + 2𝑅2(1 − 𝑐𝑜𝑠𝜔𝜏

𝐸𝑜𝑢𝑡 = 𝐸𝑖𝑛 𝑥, 𝑦, 𝑧, 𝑡
𝑇2𝑒−𝑖𝜔

𝐿
𝑐

1 − 𝑅2𝑒−𝑖𝜔2
𝐿
𝑐

5.5.2 Finesse and spectral bandwidth
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Imposing 𝐼𝑖𝑛 = 2𝑐𝜀0 𝐴0
2 and using the trigonometric identity: 𝑠𝑒𝑛2

𝜙

2
=

1−𝑐𝑜𝑠𝜙

2
,

we can rewrite the intensity of the reflected wave as:

𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛
𝑇4

1 − 𝑅2 2 + 4𝑅2𝑠𝑒𝑛2
𝜔𝜏
2

= 𝐼𝑖𝑛
𝑇4

1 − 𝑅2 2

1

1 +
2𝑅

1 − 𝑅2

2

𝑠𝑒𝑛2
𝜔𝜏
2

In the absence of mirror losses, 𝑇2 = 1 − 𝑅2 and the expression is simplified

as:

𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛
1

1 +
2𝑅

1 − 𝑅2

2

𝑠𝑒𝑛2
𝜔𝜏
2

𝐼𝑜𝑢𝑡 = 2𝑐𝜀0𝑇
4 𝐸𝑖𝑛

2
1

)1 − 𝑅2 2 + 2𝑅2(1 − 𝑐𝑜𝑠𝜔𝜏

5.5.2 Finesse and spectral bandwidth
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The full-width half-maximum ∆𝜔 =
𝜔1𝜏

2
−

𝜔2𝜏

2
corresponding to 𝐼𝑜𝑢𝑡

𝜔1𝜏

2
=

𝐼𝑜𝑢𝑡
𝜔2𝜏

2
= 𝐼𝑖𝑛/2 of the transmission peak can be calculated as:

𝐼𝑖𝑛
2
= 𝐼𝑖𝑛

1

1 +
2𝑅

1 − 𝑅2

2

𝑠𝑒𝑛2
𝜔1𝜏
2

𝑠𝑒𝑛2
𝜔1𝜏

2
=

1 − 𝑅2

2𝑅

2

𝜔1 =
2

𝜏
𝑎𝑟𝑐𝑠𝑒𝑛

1 − 𝑅2

2𝑅

Thus:

∆𝜔 =
4

𝜏
𝑎𝑟𝑐𝑠𝑒𝑛

1 − 𝑅2

2𝑅

𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛
1

1 +
2𝑅

1 − 𝑅2

2

𝑠𝑒𝑛2
𝜔𝜏
2

5.5.2 Finesse and spectral bandwidth
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If we assume  𝑅 ≈ 1, then 1 − 𝑅2 ≪ 𝑅 and so:

∆𝜔 ≈
4

𝜏

1 − 𝑅2

2𝑅
=
2

𝜏

1 − 𝑅2

𝑅

In frequency unit:

∆𝜐 =
∆𝜔

2𝜋
=

1

𝜋𝜏

1 − 𝑅2

𝑅

Then, the finesse of the cavity will be: 𝐹∗ =
𝐹𝑆𝑅

∆𝜐

Since 𝐹𝑆𝑅 =
𝑐

2𝐿
and 𝜏 = 2

𝐿

𝑐
=

1

𝐹𝑆𝑅
, you get:

𝐹∗ = 𝜋
𝑅

1 − 𝑅2

∆𝜔 =
4

𝜏
𝑎𝑟𝑐𝑠𝑒𝑛

1 − 𝑅2

2𝑅

5.5.2 Finesse and spectral bandwidth
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Since the finesse represents the number of waves that overlap constructively in

cavities, the intra-cavity power will be proportional to the input optical power for the

cavity finesse.

The question is: how much the reflectivity of the mirrors must be increased to achieve

a substantial increase in the optical path? Considering a cavity length 𝐿 = 20 cm

𝐹∗ = 𝜏
𝑅

1 − 𝑅2
So, to increase the amplification of the intra-cavity intensity, the
parameter to optimize is the reflectivity of the mirrors.

R = 0.8

𝐹𝑆𝑅 =
𝑐

2𝐿
= 0.75 𝐺𝐻𝑧

𝜏𝑟 =
1

𝐹𝑆𝑅
= 1.3 𝑛𝑠

𝛥𝜐 = 53.41 𝑀𝐻𝑧

𝐹∗ =
𝐹𝑆𝑅

Δ𝜐
=

750 𝑀𝐻𝑧

53.41 𝑀𝐻𝑧
= 14

𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛
1

1 +
2𝑅

1 − 𝑅2

2

𝑠𝑒𝑛2
𝜔𝜏
2

∆𝜐 =
1

𝜋𝜏

1 − 𝑅2

𝑅

5.5.2 Finesse and spectral bandwidth



5.5 SPECTROSCOPY WITH RESONANT CAVITIES

71
SPETTROSCOPIA 

LASER

R = 0.9

𝐹𝑆𝑅 =
𝑐

2𝐿
= 0.75 𝐺𝐻𝑧

𝜏𝑟 =
1

𝐹𝑆𝑅
= 1.3 𝑛𝑠

𝛥𝜐 = 25.17 𝑀𝐻𝑧

𝐹∗ = 29.8

R = 0.95

𝐹𝑆𝑅 =
𝑐

2𝐿
= 0.75 𝐺𝐻𝑧

𝜏𝑟 =
1

𝐹𝑆𝑅
= 1.3 𝑛𝑠

𝛥𝜐 = 12.25 𝑀𝐻𝑧

𝐹∗ = 61

5.5.2 Finesse and spectral bandwidth
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R = 0.99

𝐹𝑆𝑅 =
𝑐

2𝐿
= 0.75 𝐺𝐻𝑧

𝜏𝑟 =
1

𝐹𝑆𝑅
= 1.3 𝑛𝑠

𝛥𝜐 = 2.4 𝑀𝐻𝑧

𝐹∗ = 312

R = 0.995

𝐹𝑆𝑅 =
𝑐

2𝐿
= 0.75 𝐺𝐻𝑧

𝜏𝑟 =
1

𝐹𝑆𝑅
= 1.3 𝑛𝑠

𝛥𝜐 = 1.19 𝑀𝐻𝑧

𝐹∗ = 630

5.5.2 Finesse and spectral bandwidth
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𝐹∗ = 𝜏
𝑅

1 − 𝑅2

For 𝑅 > 0.99, as the finesse (and therefore the amplification of the

intra-power) the width of the cavity mode becomes narrower and

narrower. Which is the conseguence?

∆𝜐 =
1

𝜋𝜏

1 − 𝑅2

𝑅

5.5.2 Finesse and spectral bandwidth
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The linewidth of a laser emission is not strictly monochromatic. In diode lasers, the

spectral broadening of the laser radiation is mainly determined by current fluctuations

of the current driver, which in turn generate fluctuations in wavelength. Typically, using

standard current drivers, the spectral linewidth of a laser emission line is around 50

MHz. When coupled with cavity modes having linewidth < 50 MHz, all laser power

spectrally distributed out of the cavity mode is not coupled into cavities, to be back

reflected by the input mirror.

Frequenza

In
te

n
s
it
à

Modi di cavità 
Modo laser

Modi di cavità 

5.5.2 Finesse and spectral bandwidth
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For high finesses 𝐹∗~300, Δ𝜐 ~ 2 𝑀𝐻𝑧 (corresponding to 𝑅~0.99). Hence, to ensure an

optimal coupling, it is necessary that the linewidth of the laser emission mode is less

than MHz. For semiconductor lasers, this can be achieved by using ultra-low noise

current drivers, which can reduce the linewidth even below MHz.

Frequency

In
te

n
s
it
y

Cavity Modes
Laser modeCavity modes

Let us suppose that the linewidth of the laser was reduced in order to be comparable

with the linewidth of the cavity mode. The next step is to spectrally overlap the laser

mode with one of the cavity modes.

5.5.2 Finesse and spectral bandwidth
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By keeping the laser wavelength fixed, the overlap can be achieved by varying the length

of the cavity which produces a variation of the 𝐹𝑆𝑅 =
𝑐

2𝐿
.

Frequenza

In
te

n
s
it
à

𝐹𝑆𝑅2

𝐹𝑆𝑅1

Varying the FSR is equivalent to changing the position of the

cavity peaks, without altering the width of the mode and the

finesse that depend on the reflectivity of the mirrors.

5.5.2 Finesse and spectral bandwidth
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Let us assume that both the cavity modes and the laser mode have a linewidth of 1 MHz.
An accurate control of the spectral overlap requires a change of the FSR with an accuracy
below 1 MHz, to have the possibility that the peak of the laser mode coincides as much as
possible with one of the cavity peaks.

𝜕𝐹𝑆𝑅 =
𝑐

2𝐿2
𝜕𝐿

corresponding to:

𝜕𝐿 = 𝜕𝐹𝑆𝑅
2𝐿2

𝑐

For 𝐿 = 15 𝑐𝑚, being 𝑐 = 30 𝑐𝑚 ∙ 𝐺𝐻𝑧, we obtain that it is necessary to
change the length of the cavity with an accuracy of 𝜕𝐿 = 15 𝜇𝑚. Such
precision can be achieved if one of the two mirrors is mounted on a
piezoelectric motor (piezo-actuators).

If we ask an accuracy of 𝜕𝐹𝑆𝑅 = 0.1 𝑀𝐻𝑧 for the FSR, which is the correspondent
variation of the length 𝐿 of the cavity required to reach such an accuracy?

Being 𝐹𝑆𝑅 =
𝑐

2𝐿
, deriving with respect to 𝐿:

5.5.2 Finesse and spectral bandwidth
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5.5.3 Optical coupling of a laser beam in a cavity

In order to optimize the amount of light coupled into the cavity, an anti-reflection
coating (AR) is deposited on the flat surface of the mirror (to minimize the reflective
losses of the incoming beam), while a highly reflective coating (HR) is deposited on the
convex side of the mirror.

Let us suppose we have realized a linear cavity with two identical plane-convex mirrors
placed at a distance equal to twice the focal length of the two mirrors.
How can we couple the light into the cavity in order to have amplification? The most
used method is to directly use one of the two mirrors as an entrance mirror.
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HRAR

Spectral characteristics of a highly reflective coating

Spectral characteristics of an anti-reflective coating

5.5.3 Optical coupling of a laser beam in a cavity
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Which are the characteristics must the incoming laser beam have to be spatially coupled
with the cavity?

Let us consider only the fundamental longitudinal mode with Gaussian intensity
distribution. The intro-cavity field reaches its smallest dimensions (beam waist) at the
center of the cavity.

The optical coupling of a laser beam in a cavity is called as mode-matching. A perfect
mode-matching is reached when the radius of curvature and the wavefront of the input
beam overlap perfectly with those of the longitudinal mode 𝑇𝐸𝑀00 of the cavity. If the
input laser beam is collimated, this condition can be achieved using a focusing lens.

5.5.3 Optical coupling of a laser beam in a cavity
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We use ABCD matrix formalism to estimate the size of the beam at the center of the

cavity formed by two identical mirrors of radius of curvature 𝑅 placed at a distance 𝐿.

Starting from the center of the cavity, being 𝑞 𝑧1 the complex radius of curvature, the

transformation matrix after a round-trip into cavities will be:

L

𝑨 𝑩
𝑪 𝑫

= 1
𝐿

2
0 1

1 0

−
2

𝑅
1

1 𝐿
0 1

1 0

−
2

𝑅
1

1
𝐿

2
0 1

To decide which lens to use you need to calculate the beam waist of the cavity.

5.5.3 Optical coupling of a laser beam in a cavity
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Exploiting the row-by-column multiplication:

𝑨 𝑩
𝑪 𝑫

=

2𝐿2 − 4𝐿𝑅 + 𝑅2

𝑅2
)𝐿(𝐿2 − 3𝐿𝑅 + 2𝑅2

𝑅2

)4(𝐿 − 𝑅

𝑅2
2𝐿2 − 4𝐿𝑅 + 𝑅2

𝑅2

After a round-trip, the beam in the center of the cavity must have the same

parameters as the starting one, namely:

𝑞 𝑧1 + 𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑖𝑝 = 𝑞 𝑧1

leading to:

𝑞 𝑧1 =
𝐴𝑞 𝑧1 + 𝐵

𝐶𝑞 𝑧1 + 𝐷

5.5.3 Optical coupling of a laser beam in a cavity
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Since at the waist beam point the real radius of curvature is infinite 𝑅 𝑧1 = ∞,

1

)𝑞(𝑧1
= −𝑖

𝜆

)𝜋𝑤2(𝑧1

Imposing to be real:

𝑤 𝑧1 =
𝑞(𝑧1)𝜆

𝜋

Once 𝑞(𝑧1) is calculated, the beam waist can be easily determined.

𝑅 = 40 𝑚𝑚
𝜆 = 3.5 𝜇𝑚

𝑞 𝑧1 =
𝐴𝑞 𝑧1 + 𝐵

𝐶𝑞 𝑧1 + 𝐷

5.5.3 Optical coupling of a laser beam in a cavity
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5.5.4 Cavity-Ring Down Spectroscopy

Cavity ring-down spectroscopy (CRDS) is based on the measurement of the decay time

of an optical resonator when filled with an absorbing gas species.

The pulse will be reflected back and forth by the mirrors and for each

round-trip a small fraction of the light will be transmitted from the output

mirror to reach the optical detector.

Let us consider a short laser pulse with 𝑃0 as input power that is sent inside a
linear cavity composed of two highly reflective mirrors (reflectivity 𝑅1 = 𝑅2 = 𝑅)
and transmittivity equal to 𝑇 = 1 − 𝑅 − 𝐴 ≪ 1 , where 𝐴 includes all loss
mechanisms occurring in the cavity (absorption loss, scattering loss, diffraction
loss) except for the losses introduced by the absorption of the sample.
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The transmitted power of the first output pulse will be:

𝑃1 = 𝑇2𝑒−𝛼𝐿𝑃0

where 𝛼 is the absorption coefficient of the gas species within the 𝐿-length resonator. For

each round-trip, the pulse power decreases by a factor of 𝑅2𝑒−2𝛼𝐿.

𝑃𝑛 = 𝑅𝑒−𝛼𝐿 2𝑛𝑃1

which can be rewritten as ( using the expression 𝑅 = 𝑒𝑙𝑛𝑅 ):

𝑃𝑛 = 𝑃1𝑒
)−2𝑛(𝛼𝐿−𝑙𝑛𝑅

On the other hand, the mirror reflectivity 𝑅 can be expressed as

lnR = ln )1 + (−𝑇 − 𝐴 ≈ −𝑇 − 𝐴

After 𝑛 round-trips, the power of the transmitted pulse is decreased by:

R = 1 − 𝑇 − 𝐴

Since 𝑅 ≫ 𝑇 + 𝐴, applying the logarithm operator to both members:

ln(1 + 𝑥) ≈ x
per 𝑥 → 0

5.5.4 Cavity-Ring Down Spectroscopy
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The delay time between two pulses transmitted by the cavity will be equal to the round-trip

time of the cavity, namely 𝜏𝑅 =
2𝐿

𝑐
. Then, the 𝑛-th pulse will be revealed at time 𝑡 =

2𝑛𝐿

𝑐
.

𝑃(𝑡) = 𝑃1𝑒
−
𝑡
𝜏1

Introducing a decay time: 𝜏1 =

𝐿
𝑐

𝑇 + 𝐴 + 𝛼𝐿

Without any absorbing gas species in the cavity (𝛼 = 0), the resonator

decay time will be:

𝜏2 =

𝐿
𝑐

𝑇 + 𝐴

The discretization of the variable 𝑛 can be “converted” to the continuous temporal

variable 𝑡, by replacing 2𝑛 =
𝑐𝑡

𝐿
in 𝑃𝑛 = 𝑃1𝑒

)−2𝑛(𝑇+𝐴+𝛼𝐿 .

Thus 𝑃𝑛 = 𝑃1𝑒
)−2𝑛(𝛼𝐿−𝑙𝑛𝑅 = 𝑃1𝑒

)−2𝑛(𝑇+𝐴+𝛼𝐿

As a result, the detected signals will be a function of the time according to the

following exponential function:

𝑃(𝑡) = 𝑃1𝑒
ቁ−

𝑐𝑡
𝐿 (𝑇+𝐴+𝛼𝐿

you have:

5.5.4 Cavity-Ring Down Spectroscopy
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The difference ∆𝜏 = 𝜏2 − 𝜏1 will be:

∆𝜏 = 𝜏2 − 𝜏1 =
𝛼
𝐿
𝑐

𝑇 + 𝐴 𝑇 + 𝐴 + 𝛼𝐿
=

𝛼
𝐿2

𝑐
1 − 𝑅 𝑇 + 𝐴 + 𝛼𝐿

Thus, we can express the product 𝛼𝐿 as:

𝛼𝐿 = 1 − 𝑅
∆𝜏

𝜏1

The minimum detectable absorption 𝛼𝑚𝑖𝑛𝐿 is limited by the

reflectivity 𝑅 of the cavity mirrors and the accuracy in measuring the

decay times.

As in cavity absorption spectroscopy, in CRDS the effective optical

path is equal to 𝐿𝑒𝑓𝑓 = 𝐿/(1 − 𝑅) because the laser pulse passes

through the gas cell 1/(1 − 𝑅) times.

𝜏1 =

𝐿
𝑐

𝑇 + 𝐴 + 𝛼𝐿 𝜏2 =

𝐿
𝑐

𝑇 + 𝐴

5.5.4 Cavity-Ring Down Spectroscopy
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Advantages:
- It is independent of the laser power

because the absorption of the gas is
estimated starting from the
exponent of the exponential trend.
Thus, the system is not affected by
fluctuations in the power of the
source.

- It exploits multiple reflections in
cavities, increasing the effective
length of light-gas interaction.

Disadvatages:
- Decay time must be measured when there is no gas absorption

(background reference signal)
- The measurement of the concentration cannot take place in real time,

but a post-processing analysis is mandatory.

5.5.4 Cavity-Ring Down Spectroscopy
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The photoacoustic effect was observed by Bell more than a century ago (1880) in a

completely accidental way while working on perfectioning the photophone.

The absorption techniques analyzed so far are called direct absorption techniques because

they measure the absorption starting from the light transmitted by the sample.

Indirect absorption techniques measure the effect that an optical absorption produces

within a sample.

An indirect absorption technique is the photoacoustic technique, which is based on the

photoacoustic effect.
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On June 3, 1880, Alexander Graham Bell
realized a photophone, a device that allowed
for the transmission of sound on a beam of
light.

Vibrations in the voice
causes oscillations in
the shape of a flexible
mirror.

On June 3, 1880, Alexander Graham Bell invented the first wireless telephone

Bell directs sunlight into the mirror.

The reflected beam results modulated by flexible mirror 
vibrations. 

The photophone used crystalline selenium cells at the focal point
of its parabolic receiver. This material's electrical resistance varies
inversely with the illumination falling upon it, i.e., its resistance is
higher when it is in the dark, and lower when it is exposed to light.
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Detection element
(e.g. microphone)

The photoacoustic effect was observed by Graham Bell while he was working on the
improvement of a photophone, in an accidental way.

Bell realized that when a light beam is periodically interrupted by a chopper and
subsequently focused on a layer of thin material a sound wave is produced.

In addition, the generated acoustic
signal increased in intensity when the
layer exposed to the beam was dark in
colour.

Thus, Bell realized that this
effect was related to the
absorption of light by the thin
layer.

The photoacoustic effect occurs in all kind of materials (solids, liquids and gases)

However, due to the lack of appropriate equipment (such as light
sources, microphones), the photoacoustic effect was completely
forgotten for more than half a century.
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The photoacoustic effect for gas species can be divided into three main processes that can
be analyzed separately:
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4.6.1 Light absorption and heat generation

Molecules of the gas sample absorb optical radiation causing a local heating. This excess

of energy is transferred to the surrounding molecules by collision processes.

❑ can emit a photon – radiative de-excitation;

❑ can cause a photochemical process;

❑ it can collide with another molecule of the same species, which is in

the ground state 𝐸0 and excite it to the 𝐸1 state;

❑ it can collide with any other molecule in the gas and transfer the

absorbed optical energy into translational or kinetic energy through

collisions – non-radiative de-excitation. This process generates a

local increase of the temperature of the gas.

The molecule can relax this extra-energy and return to its ground state by means of

different decay processes:

When a molecule in the gas phase absorbs a photon, it passes from its ground energy

state 𝐸0 to an excited energy state 𝐸1 , following the Planck relation 𝐸1 − 𝐸0 = ℎ𝜐, where

ℎ𝜐 is the energy of the absorbed photon and 𝜐 its frequency.
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5.6.1 Light absorption and heat generation

If optical excitation occurs in the infrared range, the energy states involved are roto-

vibrational ones.

Let us suppose that a single molecule can be schematized with a two-level system:

The non-radiative decay time, at the pressures typically used in infrared spectroscopy

applications (< 1bar), is of the order of 10−6 − 10−9 𝑠, while the radiative decay time

varies between 10−1 − 10−3 𝑠 . In addition, at these wavelengths, the energy of the

photons is too small to induce chemical reactions, and this causes the absorbed optical

energy to be released almost completely as heat, causing an increase of the kinetic

energy of the molecules.
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5.6.1 Light absorption and heat generation

𝐸0 and 𝐸1 represent the energies of the ground state and the excited state having

population densities (number of molecules per unit volume) 𝑁0(Ԧ𝑟, 𝑡) and 𝑁1(Ԧ𝑟, 𝑡),

respectively.

Being 𝜌𝜈 the energy density of the radiation at 𝜐 =
𝐸1−𝐸0

ℎ
; 𝐵𝑖𝑗 the Einstein

coefficient for absorption, 𝐵𝑗𝑖= 𝐵𝑖𝑗 the Einstein coefficient for stimulated

emission; 𝐴𝑖𝑗 the Einstein coefficient for spontaneous emission, the radiative

transition rate 𝑟𝑖𝑗 from the generic level 𝑖 to the 𝑗 level can be written as:

𝑟𝑖𝑗 = 𝜌𝜈𝐵𝑖𝑗 + 𝐴𝑖𝑗
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5.6.1 Light absorption and heat generation

Being 𝑐𝑖𝑗 the non-radiative transition rate for collisions from the generic level 𝑖 to the 𝑗

level, the rate equation describing the temporal dependence of the population density of

the excited energy level will be:

)𝑑𝑁1( Ԧ𝑟, 𝑡

𝑑𝑡
= 𝑟01 + 𝑐01 𝑁0 Ԧ𝑟, 𝑡 − 𝑟10 + 𝑐10 𝑁1 Ԧ𝑟, 𝑡

= 𝜌𝜈𝐵01 + 𝐴01 + 𝑐01 𝑁0 Ԧ𝑟, 𝑡 − 𝜌𝜈𝐵10 + 𝐴10 + 𝑐10 𝑁1 Ԧ𝑟, 𝑡

The probability for non-radiative transitions from the ground state to
the excited one is close to zero, as it is thermally disadvantaged (𝑐01 =
0) and that 𝐴01 = 0 because 𝐸1 > 𝐸0.
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5.6.1 Light absorption and heat generation

Including also that 𝐵01= 𝐵10, the above equation becomes:

𝑑𝑁1
𝑑𝑡

= 𝜌𝜈𝐵10 𝑁0 −𝑁1 − 𝐴10 + 𝑐10 𝑁1

Let us define 𝜏 as the total lifetime of the excited level, 𝜏−1 can be

expressed as the sum of the reciprocals of the radiative (𝜏𝑟 = 1/𝐴10) and

non-radiative (𝜏𝑛𝑟 = 1/𝑐10) relaxation times:

1

𝜏
=

1

𝜏𝑟
+

1

𝜏𝑛𝑟

)𝑑𝑁1(Ԧ𝑟, 𝑡

𝑑𝑡
= 𝜌𝜈𝐵01 + 𝐴01 + 𝑐01 𝑁0 Ԧ𝑟, 𝑡 − 𝜌𝜈𝐵10 + 𝐴10 + 𝑐10 𝑁1 Ԧ𝑟, 𝑡
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5.6.1 Light absorption and heat generation

The above equation becomes:

𝑑𝑁1
𝑑𝑡

= 𝜌𝜈𝐵10 𝑁0 −𝑁1 −
𝑁1
𝜏

In the hypothesis of weakly absorbent gas 𝑁1 ≪ 𝑁0, we have:

𝑑𝑁1
𝑑𝑡

= 𝜌𝜈𝐵10𝑁0 −
𝑁1
𝜏

with 𝑁0 almost constant and approximately independent of time.

𝜌𝜈𝐵10 represents the optical absorption rate, that we can express as the flux

𝐹of incident photons for the cross section 𝜎 of the absorption process:

𝜌𝜈𝐵10 = 𝐹𝜎

𝑑𝑁1
𝑑𝑡

= 𝜌𝜈𝐵10 𝑁0 −𝑁1 − 𝐴10 + 𝑐10 𝑁1
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5.6.1 Light absorption and heat generation

If the photons flux is modulated at a frequency 𝜔, its dependence on the position Ԧ𝑟 and

time 𝑡 is given by:

𝐹 Ԧ𝑟, 𝑡 = 𝐹0 Ԧ𝑟 1 + 𝛿𝑒𝑖𝜔𝑡

If 𝛿 ≪ 1, we are in the conditions where the laser light is polarized continuously, with a

sinusoidal dither of small amplitude applied to the continuum.

𝑑𝑁1
𝑑𝑡

= 𝜎𝐹0 Ԧ𝑟 + 𝜎𝐹0 Ԧ𝑟 𝛿𝑒𝑖𝜔𝑡 𝑁0 −
𝑁1
𝜏

Neglecting the time-independent term, this represents a complete

first-order differential equation in the variable 𝑡. Its solution, which

describes how the population density of the excited state changes over

time due to the absorption of modulated light radiation, is given by:

Substituting these two relations in the expression for 
𝑑𝑁1

𝑑𝑡
, we get:

𝑑𝑁1
𝑑𝑡

= 𝜌𝜈𝐵10𝑁0 −
𝑁1
𝜏

𝜌𝜈𝐵10 = 𝐹𝜎
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5.6.1 Light absorption and heat generation

𝑁1 Ԧ𝑟, 𝑡 =
𝑁0𝜎𝐹0 Ԧ𝑟 𝛿

1 + 𝜔2𝜏2
𝜏𝑒 )𝑖(𝜔𝜏−𝜗

with 𝜗 = 𝑎𝑟𝑐𝑡(𝜔𝜏) indicates the phase shift between 𝑁1 and the photons flux 𝐹.

𝐻 Ԧ𝑟, 𝑡 =
𝑁1 Ԧ𝑟, 𝑡 ∙ 𝐸′

𝜏𝑛𝑟

where 𝐸′ is the average thermal energy released by a molecule
following the non-radiative de-excitation process of the excited state.

The generated heat rate 𝐻 Ԧ𝑟, 𝑡 can be assumed proportional to 𝑁1 Ԧ𝑟, 𝑡 by the

relation:

During this process, the molecule moves from the excited state to
the fundamental one, so 𝐸′ corresponds to the energy ℎ𝜐 of the
absorbed photon.
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5.6.1 Light absorption and heat generation

Neglecting the no-radiative relaxation and thus imposing 𝜏 = 𝜏𝑛𝑟 in the 𝑁1 Ԧ𝑟, 𝑡

expression, the heat rate becomes:

𝐻 Ԧ𝑟, 𝑡 =
𝑁0𝜎𝐹0 Ԧ𝑟 𝛿ℎ𝜐

1 + 𝜔2𝜏2
𝑒 )𝑖(𝜔𝜏−𝜗 = 𝐻0 Ԧ𝑟 𝛿𝑒 )𝑖(𝜔𝜏−𝜗

where 𝐻0 Ԧ𝑟 =
𝑁0𝜎𝐹0 Ԧ𝑟 ℎ𝜐

1+𝜔2𝜏2

The photons flux multiplied by the energy of the single photon represents the intensity of

the radiation field, namely:

𝐼0 Ԧ𝑟 = 𝐹0 Ԧ𝑟 ℎ𝜐

then 𝐻0 Ԧ𝑟 can be expressed as:

𝐻0 Ԧ𝑟 =
𝑁0𝜎𝐼0 Ԧ𝑟

1 + 𝜔2𝜏2
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5.6.1 Light absorption and heat generation

If 𝜔𝜏 ≪ 1, namely 𝜔 ≪ 106 rad/s

𝐻0 Ԧ𝑟 = 𝑁0𝜎𝐼0 Ԧ𝑟

and the heat rate becomes:

𝐻 Ԧ𝑟, 𝑡 = 𝐻0 Ԧ𝑟 𝛿𝑒 )𝑖(𝜔t−𝜗 = 𝑁0𝜎𝐼0 Ԧ𝑟 𝛿𝑒 )𝑖(𝜔t−𝜗 = 𝛼𝐼0 Ԧ𝑟 𝛿𝑒 )𝑖(𝜔t−𝜗

where 𝛼 is the optical absorption coefficient of the gas.

𝛼 = 𝑁0𝜎 =
𝑁0
𝑁𝑇𝑂𝑇

𝑁𝑇𝑂𝑇𝜎 = 𝑐𝑁𝑇𝑂𝑇𝜎

where 𝑁0 identifies the density of the absorbing molecules and 𝑐 its
relative concentration.

If the absorbing molecules are in traces within the carrier gas (carrier gas or

matrix), being 𝑁𝑇𝑂𝑇 the total number of molecules per unit volume, we have:

𝐻0 Ԧ𝑟 =
𝑁0𝜎𝐼0 Ԧ𝑟

1 + 𝜔2𝜏2

𝐻 Ԧ𝑟, 𝑡 = 𝐻0 Ԧ𝑟 𝛿𝑒 )𝑖(𝜔t−𝜗
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5.6.1 Light absorption and heat generation

When the phase shift 𝜃 = 0 , the modulation of

𝐻 Ԧ𝑟, 𝑡 follows the modulation of the incident radiation

directly without any phase delay.

The above hypotheses are both generally satisfied in applications of

photoacoustic spectroscopy for the detection of gas traces. The first is

verified because absorbing gases are, in most cases, present only at

low concentrations (in traces). The second hypothesis, on the other

hand, is verified for modulation frequencies smaller than MHz.

𝐻 Ԧ𝑟, 𝑡 = 𝐻0 Ԧ𝑟 𝛿𝑒 )𝑖(𝜔t−𝜗

This model constitutes the basis of detection of trace gas absorption detected by

photoacoustic spectroscopy. These equations are valid in the assumptions that:

o 𝐹𝜎 is small anough to avoid the saturation, so that the population density of the

excited state is small (𝑁1 ≪ 𝑁0), and the stimulated emission can be neglected;

o Low modulation frequencies: 𝜔 << 𝜏−1 .
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5.6.2 Acoustic wave generation
The second process to consider is the generation of the acoustic wave because of the
periodic variation of the pressure, as a consequence of the periodic heating of the sample
due to the non-radiative relaxation processes.

Dissipative terms due to viscosity and heat diffusion will also not be
considered in the initial discussion. They will be introduced later as a
disruptive effect of the solution.

A model for describing the generation of the acoustic wave is based on the combination
of the fluid mechanics and thermodynamics.

We consider the case of an ideal fluid, uniform and continuous, elastic, at rest, at
thermodynamic equilibrium except for the motion produced by the pressure wave, small
enough to neglect non-linear effects.

The effect of gravitational force will also be neglected so that the pressure at the
equilibrium 𝑃0 ሾ𝑁/𝑚

3ሿ and the density at equilibrium 𝜌0 ሾ𝑘𝑔/𝑚
3ሿ can be considered

constant within the fluid.

The propagation of an acoustic wave produces in the fluid variations 
in pressure, density and temperature; each variation is proportional 
to the amplitude of the acoustic wave. 
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5.6.2 Acoustic wave generation

For this reason, the acoustic wave that is generated is usually described by a sound

pressure 𝑝( Ԧ𝑟, 𝑡 ) defined as the difference between the instantaneous pressure 𝑃 and

the pressure at the equilibrium 𝑃0 :

𝑝 = 𝑃 − 𝑃0

The physical equations governing the generation in acoustic wave gases are:

o Ideal gas law:

𝑝𝑉 = 𝑛𝑅𝑇

that we can rewrite in a different way. The number of moles 𝑛 can be

expressed as the ratio of the total mass 𝑀𝑇𝑂𝑇 to the molar mass M, 𝑛 =

𝑀𝑇𝑂𝑇/𝑀

𝑝

𝑀𝑇𝑂𝑇
𝑉

= 𝑅
𝑇

𝑀
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5.6.2 Acoustic wave generation

Since 𝜌 =
𝑀𝑇𝑂𝑇

𝑉
, by using Mayer relation 𝐶𝑃 − 𝐶𝑉 = 𝑅, one obtain:

𝑝

𝜌
= 𝛾 − 1

𝐶𝑉
𝑀
𝑇

where 𝛾 =
𝐶𝑃

𝐶𝑉
is the ratio of the specific heat at constant pressure and the specific 

heat at constant volume.

o the mass conservation law

−
1

𝜌

𝜕𝜌

𝜕𝑡
= 𝛻 ∙ Ԧ𝑣

where Ԧ𝑣( Ԧ𝑟, 𝑡) is the velocity vector field

o the law of conservation of the momentum

𝜌
𝜕 Ԧ𝑣

𝜕𝑡
= −𝛻𝑝

𝑝

𝑀𝑇𝑂𝑇
𝑉

= 𝑅
𝑇

𝑀
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5.6.2 Acoustic wave generation

o the energy conservation law

𝜌
𝐶𝑉
𝑀

𝜕𝑇

𝜕𝑡
+ 𝑝𝛻 ∙ Ԧ𝑣 =

𝜕𝑄

𝜕𝑡

where 𝑄 is the heat produced as a result of non-radiative relaxation processes of the

absorbing molecules after the absorption of modulated light.

The four equations that regulate the dynamics of the pressure field and the thermal 

gradient are:
𝑝

𝜌
= 𝛾 − 1

𝐶𝑉
𝑀
𝑇

−
1

𝜌

𝜕𝜌

𝜕𝑡
= 𝛻 ∙ Ԧ𝑣

𝜌
𝜕 Ԧ𝑣

𝜕𝑡
= −𝛻𝑝

𝜌
𝐶𝑉
𝑀

𝜕𝑇

𝜕𝑡
+ 𝑝𝛻 ∙ Ԧ𝑣 =

𝜕𝑄

𝜕𝑡
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5.6.2 Acoustic wave generation

It is possible to couple the above equations to obtain a differential equation in the

pressure field variable 𝑝 Ԧ𝑟, 𝑡 :

𝛻2𝑝 Ԧ𝑟, 𝑡 −
1

𝑐2
𝜕2𝑝 Ԧ𝑟, 𝑡

𝜕𝑡2
= −

𝛾 − 1

𝑐2
𝜕𝐻

𝜕𝑡

where 𝑐 =
𝛾𝑅𝑇

𝑀
is the sound velocity in the gas and 𝐻 =

𝜕𝑄

𝜕𝑡
is the heat rate

generated by the optical absorption.

𝛻2 +
𝜔2

𝑐2
𝑝 Ԧ𝑟, 𝜔 =

𝛾 − 1

𝑐2
𝑖𝜔𝐻 Ԧ𝑟, 𝜔

We have obtained that the pressure field 𝑝 Ԧ𝑟, 𝑡 propagates according to the

D'Alembert equation, thus solutions are waves.

For a sinusoidal modulation of the incident radiation, it is convenient to
rewrite the differential equation in the frequency domain, applying the
Fourier transform to both members:



5.6 PHOTOACOUSTIC SPECTROSCOPY

109
SPETTROSCOPIA 

LASER

5.6.2 Acoustic wave generation

The Fourier's theorem gives also the relations for the expressions in the time and in the

frequency domains:

𝑝 Ԧ𝑟, 𝑡 = න
−∞

+∞

𝑝 Ԧ𝑟, 𝜔 𝑒−𝑖𝜔𝑑𝜔

𝐻 Ԧ𝑟, 𝑡 = න
−∞

+∞

𝐻 Ԧ𝑟, 𝜔 𝑒−𝑖𝜔𝑑𝜔

The solution 𝑝 Ԧ𝑟, 𝜔 can be expressed as an infinite series of acoustic modes 𝑝𝑘 Ԧ𝑟 :

𝑝 Ԧ𝑟, 𝜔 =

𝑘

𝐴𝑘(𝜔)𝑝𝑘 Ԧ𝑟

with 𝐴𝑘(𝜔) amplitude of the 𝑘-th mode.

𝛻2 +
𝜔𝑘

2

𝑐2
𝑝𝑘 Ԧ𝑟 = 0

with 𝜔𝑘 is the angular frequency of the normal mode 𝑝𝑘 Ԧ𝑟 .

𝛻2𝑝 Ԧ𝑟, 𝑡 −
1

𝑐2
𝜕2𝑝 Ԧ𝑟, 𝑡

𝜕𝑡2
= −

𝛾 − 1

𝑐2
𝜕𝐻

𝜕𝑡

𝛻2 +
𝜔2

𝑐2
𝑝 Ԧ𝑟,𝜔 =

𝛾 − 1

𝑐2
𝑖𝜔𝐻 Ԧ𝑟,𝜔

𝑝𝑘 Ԧ𝑟 is the solution of the associated homogeneous equation:
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5.6.3 Thermal diffusion mode

The equations can be coupled to study the propagation of the

thermal gradient by eliminating the pressure dependence.

𝑝

𝜌
= 𝛾 − 1

𝐶𝑉
𝑀
𝑇

−
1

𝜌

𝜕𝜌

𝜕𝑡
= 𝛻 ∙ Ԧ𝑣

𝜌
𝜕 Ԧ𝑣

𝜕𝑡
= −𝛻𝑝

𝜌
𝐶𝑉
𝑀

𝜕𝑇

𝜕𝑡
+ 𝑝𝛻 ∙ Ԧ𝑣 =

𝜕𝑄

𝜕𝑡

𝜕𝑇

𝜕𝑡
− 𝐷𝑇𝛻

2𝑇 =
𝐻

𝜌𝐶𝑃

where 𝐷𝑇 is the thermal diffusivity, defined as:

𝐷𝑇 =
𝜆

𝜌𝐶𝑃

with λ thermal conductivity defined as the ratio of the thermal current density to the

thermal gradient.

A solution of the diffusion equation can be obtained using the Laplace

transform. The thermal perturbation per unit of energy induced by a point

source 𝐻 Ԧ𝑟, 𝑡 will be:

𝑇(𝑥, 𝑦, 𝑧, 𝑡) =
1

𝜌𝐶𝑃

1

4𝜋𝐷𝑇𝑡
3/2

𝑒
−
𝑥2+𝑦2+𝑧2

4𝐷𝑇𝑡
𝑡 ≥ 0

The thermal diffusion equation is obtained:
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5.6.3 Thermal diffusion mode

Thermal variations can be converted into density variations using the definition of the

volumetric thermal expansion coefficient:

𝛽 = −
1

𝜌

𝜕𝜌

𝜕𝑇
𝑃

Thus, the density variations result:

𝜌 𝑥, 𝑦, 𝑧, 𝑡 = −
𝛽

𝐶𝑃

1

4𝜋𝐷𝑇𝑡
3/2

𝑒
−
𝑥2+𝑦2+𝑧2

4𝐷𝑇𝑡 𝑡 ≥ 0

This solution can be generalized for each thermal source, using the

convolution operation between the real thermal source and the

response to a point source.

The exponent 𝜏𝑑𝑖𝑓𝑓 =
𝑙2

4𝐷𝑇
is the diffusion time and

represents the time necessary for the heat to
propagate at a distance 𝑙 from the heat source.

𝑇(𝑥, 𝑦, 𝑧, 𝑡) =
1

𝜌𝐶𝑃

1

4𝜋𝐷𝑇𝑡
3/2

𝑒
−
𝑥2+𝑦2+𝑧2

4𝐷𝑇𝑡
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5.6.3 Thermal diffusion mode

The two phenomena do not interfere with each other. This can be easily demonstrated by

comparing the characteristic time it takes for the acoustic and thermal wave to

propagate.

In air, considering 𝐷𝑇 = 1.06 ∙ 10−5 Τ𝑚2 𝑠, the time required by the thermal perturbation

to spread up to 𝑙 = 1 𝑐𝑚 far from the source is:

The study of the hydrodynamic response of a system with a photothermal excitation causes

both a local thermal diffusion and a propagation of an acoustic wave within the gas.

𝜏𝑑𝑖𝑓𝑓 =
𝑙2

4𝐷𝑇
≈

10−4𝑚2

4 ∙ 10−5 Τ𝑚2 𝑠
= 2.5 𝑠

The same distance will be covered by the acoustic wave in a time equal to (sound

velocity 𝑐 = 343 𝑚/𝑠)

𝜏𝑎 =
𝑙

𝑐
≈

10−2𝑚

343 Τ𝑚 𝑠
= 3 ∙ 10−5𝑠

The two phenomena are non-interfering at distances greater than

few millimeters because they occur on different time scales.

𝜏𝑑𝑖𝑓𝑓 =
𝑙2

4𝐷𝑇
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5.6.3 Thermal diffusion mode

It follows that the spatial and temporal evolution of the acoustic wave and the thermal

diffusion are different.

In the following graph, the change in density 𝛿𝜌 as a function of distance 𝑥 from the heat

source and as a function of time is shown for one-dimensional propagation along the 𝑥-axis

with an excitation pulse generated in the y−z plane

The thermal and acoustic
contributions are well
recognizable: the thermal
diffusion is presented as a
negative variation of the
density, whose maximum is
located in x = 0, with a
narrow broadening in
space and time; acoustic
propagation occurs in two
directions opposite, at the
speed of sound.
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5.6.3 Thermal diffusion mode

How can we measure local temperature changes?

The easiest approach is to measure the changes in refractive index induced by thermal

effects. This technique is known as photothermal spectroscopy.

The refractive index of a gas depends on the temperature. Therefore, infinitesimal

variations of the temperature 𝛿𝑇 cause variations in the refractive index:

𝛿𝑛 𝑇, 𝜌 =
𝑑𝑛

𝑑𝑇
𝛿𝑇

In the Clausius-Mossotti approximation:
𝑑𝑛

𝑑𝑇
= −

𝑛0
2 − 1

2𝑇0

where 𝑇0 is the absolute temperature and 𝑛0 is the refractive index of the

unperturbed gas.

𝛿𝑛 = −
𝑛0 − 1 𝑛0 + 1

2𝑇0
𝛿𝑇 ≈ −

𝑛0 − 1

𝑇0
𝛿𝑇

Since 𝑛0 ≈ 1, the previous equation becomes: 
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5.6.3 Thermal diffusion mode

The most efficient way to monitor refractive index changes is to use an optical

interferometer, monitoring the relative phase change of light passing through the gas

sample.

The relationship between the phase shift 𝛿𝜑 of the beam at the wavelength 𝜆 induced on

an optical path 𝐿 by a change in the refractive index (caused in turn by a local change of the

temperature) will be:

𝛿𝜙 =
2𝜋𝐿

𝜆
𝛿𝑛 = −

2𝜋𝐿

𝜆

𝑛0 − 1

𝑇0
𝛿𝑇

The most used interferometer is the Mach-Zender interferometer.

Arm of the Mach-Zender

Optical beam for 
photothermal excitation

Chamber with 
absorbing gas
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5.6.4 Acoustic wave detection

The detection of the acoustic wave takes place mainly using a microphone.

o The laser source is modulated to the frequency of the fundamental acoustic
mode of the acoustic cell.

In photoacoustic spectroscopy, the gas is enclosed within an acoustic cell in which
optical absorption also takes place. The acoustic cell acts as an acoustic resonator that
amplifies only the acoustic frequencies corresponding to the acoustic modes of the cell.

o A microphone is located inside the acoustic cell at the antinode point of the
acoustic mode, in order to detect the maximum strength of the acoustic pattern.

o The acoustic cell has an input and an exit window for the laser beam.

o The geometry and size of the cell determine its resonance properties.
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5.6.4 Acoustic wave detection

The calculation of normal acoustic modes is determined by imposing the right
boundary conditions, so it is highly dependent on the geometry of the acoustic cell.

Although several theoretical
models allow to calculate with
excellent precision the frequencies
of the cavity modes, it is still
preferred to measure them. The
most used method is to send a
white sound into the acoustic cell
in the audible spectrum (20 Hz ÷20
KHz) and to detect the response of
the cavity with the microphone.

When the modulation frequency matches one of the frequencies of the

cavity modes 𝜔 = 𝜔𝑘 , the acoustic energy accumulates in a standing

wave and the system works as an acoustic amplifier.

Longitudinal 
modes

Azimuthal  
modes

Radial  
modes



5.6 PHOTOACOUSTIC SPECTROSCOPY

118
SPETTROSCOPIA 

LASER

5.6.4 Acoustic wave detection

𝐴𝑘 𝜔𝑘 =
൫𝛾 − 1)𝛼𝑃𝐿𝑄𝑘

𝜔𝑘𝑉0
Thus, the photoacoustic signal is proportional to the absorption

coefficient 𝛼, to the incident optical power 𝑃 and to the interaction

length 𝐿; it is inversely proportional to the modulation frequency 𝜔𝑘 and

the volume of the cell 𝑉0.

The amplitude of the 𝑘-th mode 𝑝𝑘 at the resonance frequency 𝜔𝑘 is proportional to:

𝑄𝑘 =
𝜔𝑘

∆𝜔𝑘

The resulting amplification of the acoustic wave is determined by the total losses of the

resonator.

It is defined in terms of the quality factor 𝑄𝑘 of the resonance mode :

Experimentally, 𝑄𝑘 is calculated as the ratio of the resonance frequency 𝜔𝑘 of the mode
to the full-width half maximum ∆𝜔𝑘 value of the resonance curve of the mode:

𝑄𝑘 = 2π
𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦

𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
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In traditional photoacoustic spectroscopy, the common approach to detect the acoustic

signal generated by modulated laser radiation in an absorbing gas uses an acoustic

resonator filled with the gas sample and a microphone as a detector.

o the capability to build acoustic cells that are excellent resonators. The resonance

frequencies are typically in the range of 1 to 4 kHz and the quality factor at

atmospheric pressure does not exceed a few hundred;

o the performance of the microphone, i.e., the minimum sound wave

intensity that the microphone can detect, together with its state of

isolation from the surrounding environment, which can generate a

significant noise contribution within its detection band.

The ultimate detection  sensitivity is strongly influenced by:
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An alternative approach for photoacoustic detection of gas traces is to use a quartz
tuning fork as an acoustic transducer.

This variant of the photoacoustic spectroscopy is known as quartz-
enhanced photoacustic spectroscopy, QEPAS.

The energy density is high at the beam waist of the beam and therefore it makes sense
to assume that the acoustic wave has as its source at the beam waist of the beam.

Let us suppose to focus a collimated beam inside a cell containing the gas sample.

If we place the tuning fork so that the beam waist is between the prongs of the tuning
fork, the acoustic wave will deflect the two prongs by putting them in oscillation.

5.7 QUARTZ-ENHANCED PHOTOACOUSTIC 
SPECTROSCOPY
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The laser beam is focused 

between prongs of the 

QTF

A sound wave is generated between 

prongs (photoacoustic effect)

The sound wave generates a stress field 𝑇𝑖𝑗 that 

puts prongs in vibration (antisymmetric 

flexural mode)

The stress field 𝑇𝑖𝑗
generates a strain 

field 𝑆𝑖𝑗
𝑇𝑖 = 𝑌𝑖𝑗

𝐸𝑆𝑗

Piezoelectric 

effect generates 

charges 

proportional to 

the strain field

𝐷𝑖 = 𝑑𝑖𝑗𝑆𝑗

5.7 QUARTZ-ENHANCED PHOTOACOUSTIC 
SPECTROSCOPY
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If the tuning fork is placed inside a cell containing the gas and the
modulated laser beam focused between the prongs of the tuning
fork, the acoustic wave will deflect the two prongs in two opposite
directions, exciting an in-plane mode of vibration, called
antisymmetric flexural vibration mode.

The antisymmetric flexural vibration is piezo-electrically active, and
electric charges are generated on the surface.

Conversely, the symmetric flexural vibration (mode of vibration
in the plane of the tuning fork with the two prongs moving in the
same direction) is piezo-electrically inactive.

The charges are therefore collected by
thin layers of gold or silver deposited
on the quartz surface. They can be
collected and measured as a voltage
or current signal, depending on the
electronic circuit used.

5.7 QUARTZ-ENHANCED PHOTOACOUSTIC 
SPECTROSCOPY
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Until 2013, tuning forks used for QEPAS were

those typically employed in watches and

smartphones.

o the ambient noise density

follows the 1/𝑓-dependency

and it is very low above 10

KHz;

The frequency of the fundamental
antisymmetric flexural mode is 𝑓0 =
32768 Hz (215 Hz)

with a quality factor of about 𝑄0 = 13,000-15,000 at atmospheric 
pressure but can reach 100,000 in a vacuum. 

These features make QEPAS devices highly
immune to acoustic noise because:

5.7 QUARTZ-ENHANCED PHOTOACOUSTIC 
SPECTROSCOPY
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o Sound waves from an external source tend to apply a force in the same direction

on the two prongs of the tuning fork. This does not excite the antisymmetric

(piezoelectrically active) flexural mode in which the two prongs move in opposite

directions.

o the full-width half maximum ∆𝜔𝑘 value of the resonance curve of the
tuning fork at normal pressure is less than 3 Hz (∆𝑓 = 𝑓0/𝑄0), and only
the frequencies contained in this very narrow spectral band can
produce an efficient excitation of the flexural vibrational mode.

5.7 QUARTZ-ENHANCED PHOTOACOUSTIC 
SPECTROSCOPY
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The photoacoustic signal for QEPAS will follow the same dependencies found for

photoacoustic spectroscopy: the substantial difference is that the tuning fork itself acts

as both an acoustic resonator and a transducer.

𝑆𝑄𝐸𝑃𝐴𝑆 ∝
𝛼𝑃𝑄0
𝑓0

We note that compared to traditional photoacoustics, in QEPAS:

The straightforward approach to increase the performance of the
QEPAS technique, the resonance frequency of the tuning fork
should be decreased while keeping high the quality factor.

Then we can adapt the expression previously found for photoacoustic spectroscopy
with microphones:

𝐴𝑘 𝜔𝑘 =
൫𝛾 − 1)𝛼𝑃𝐿𝑄𝑘

𝜔𝑘𝑉0

o The tuning fork has a quality factor one order of magnitude larger

o It operates at higher frequencies.

o the size of the acoustic cell is no longer important because the tuning fork

itself acts as a resonator

5.7 QUARTZ-ENHANCED PHOTOACOUSTIC 
SPECTROSCOPY
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5.7.1 Quartz tuning fork: flexural modes

In order to study the dependence of the geometry and material of the tuning fork on
the frequency of the antisymmetric flexural mode, a mechanical model for flexural
oscillations must be introduced.

o each prong operates as a cantilever, with one end
clamped at the base and the other one free to move

The main assumptions for the mechanical model for flexural oscillations are:

o the center of mass of each prong does not
change while prongs are oscillating.

o Despite vibrate simultaneously, the
vibrations of the two prongs are
independent of each other, in other words,
the oscillation of a prong does not affect
the oscillation of the other.

Free end

Clamped
end

5.7 QUARTZ-ENHANCED PHOTOACOUSTIC SPECTROSCOPY
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5.7.1 Quartz tuning fork: flexural modes

With those assumptions, being 𝐸 the Young's modulus (one-dimensional) of quartz

crystal, 𝜌 its volumetric density, 𝐼 the moment of inertia and 𝐴 the area of the cross

section of the prong, the description of the motion of each prong is given by the

classical Euler-Bernoulli theory described by a fourth-order differential equation :

𝐸𝐼
)𝜕4𝑦(𝑥, 𝑡

𝜕𝑥4
+ 𝜌𝐴

)𝜕2𝑦(𝑥, 𝑡

𝜕𝑡2
= 0

The Euler-Bernoulli equation can be solved by assuming that the prong displacement

can be separated into two contributions, one dependent on position and the other

on time (method of separation of variables):

𝐸𝐼

)𝜌𝐴𝑋(𝑥

)𝜕4𝑋(𝑥

𝜕𝑥4
= −

1

)𝑓(𝑡

)𝜕2𝑓(𝑡

𝜕𝑡2

Since the left member does not change as 𝑡 changes, the right
member must be constant. The same is for the right-hand side.

𝑦 𝑥, 𝑡 = 𝑋 𝑥 𝑓(𝑡)

Replacing:
y

x
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5.7.1 Quartz tuning fork: flexural modes

If we denote this constant as 𝜔𝑛
2, we will have that:

𝐸𝐼

)𝜌𝐴𝑋(𝑥

)𝜕4𝑋(𝑥

𝜕𝑥4
= 𝜔𝑛

2

So, we can rewrite it as:

)𝜕4𝑋(𝑥

𝜕𝑥4
− 𝑘𝑛

4𝑋 𝑥 = 0

with 𝑘𝑛
4 =

𝜔𝑛
2𝜌𝐴

𝐸𝐼

It can be shown that the general solution is a linear combination of

trigonometric functions:

𝑋 𝑥
= 𝐶1 cos 𝑘𝑛𝑥 + cosh 𝑘𝑛𝑥 + 𝐶2 cos 𝑘𝑛𝑥 − cosh 𝑘𝑛𝑥
+ 𝐶3 sen 𝑘𝑛𝑥 + senh 𝑘𝑛𝑥 + 𝐶4 sen 𝑘𝑛𝑥 − senh 𝑘𝑛𝑥

𝐸𝐼

)𝜌𝐴𝑋(𝑥

)𝜕4𝑋(𝑥

𝜕𝑥4
= −

1

)𝑓(𝑡

)𝜕2𝑓(𝑡

𝜕𝑡2
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5.7.1 Quartz tuning fork: flexural modes

To determine the 4 constants 𝐶1, we need to impose the boundary conditions.

𝑋 0 = 0

𝜕𝑋 0

𝜕𝑥
= 0

𝜕2𝑋 𝐿

𝜕𝑥2
= 0

𝜕3𝑋 𝐿

𝜕𝑥3
= 0

Fixing to 𝑥 = 0 the end of the prong clamped to the support, 𝑥 = 𝐿 will identify the

free end of the prong. Then, the boundary conditions become:

We impose that the clamped end of the prong (the one connected to the support)

must have zero displacement and velocity, while the free end cannot be subject to a

bending moment or a shear force, namely it is free to oscillate.

These boundary conditions are known in the literature as clamped-free boundary

conditions.

0

L

x
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5.7.1 Quartz tuning fork: flexural modes

• Using the first condition, we get (with 𝑠𝑒𝑛ℎ0 = 0 and 𝑐𝑜𝑠ℎ0 = 1 ):

𝑋 0 = 0 = 2𝐶1

leading to 𝐶1 = 0

• With the second condition imposed, deriving respect to 𝑥 ( 
𝜕𝑠𝑒𝑛ℎ𝑥

𝜕𝑥
= 𝑐𝑜𝑠ℎ𝑥 and

𝜕𝑐𝑜𝑠ℎ𝑥

𝜕𝑥
= 𝑠𝑒𝑛ℎ𝑥):

𝜕𝑋 𝑥

𝜕𝑥
= 𝐶2 −sen 𝑘𝑛𝑥 − senh 𝑘𝑛𝑥 + 𝐶3 cos 𝑘𝑛𝑥 + cosh 𝑘𝑛𝑥
+ 𝐶4 cos 𝑘𝑛𝑥 − cosh 𝑘𝑛𝑥

Imposing:

𝜕𝑋 0

𝜕𝑥
= 0 = 2𝐶3

then 𝐶3 = 0

𝑋 𝑥
= 𝐶1 cos 𝑘𝑛𝑥 + cosh 𝑘𝑛𝑥 + 𝐶2 cos 𝑘𝑛𝑥 − cosh 𝑘𝑛𝑥
+ 𝐶3 sen 𝑘𝑛𝑥 + senh 𝑘𝑛𝑥 + 𝐶4 sen 𝑘𝑛𝑥 − senh 𝑘𝑛𝑥
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5.7.1 Quartz tuning fork: flexural modes

With 𝐶1 = 𝐶3 = 0, the general solution becomes:

𝑋 𝑥 = 𝐶2 cos 𝑘𝑛𝑥 − cosh 𝑘𝑛𝑥 + 𝐶4 sen 𝑘𝑛𝑥 − senh 𝑘𝑛𝑥

• Let’s impose the third condition:

𝜕2𝑋 𝐿

𝜕𝑥2
= 𝐶2 −cos 𝑘𝑛𝐿 − cosh 𝑘𝑛𝐿 + 𝐶4 −sen 𝑘𝑛𝐿 − senh 𝑘𝑛𝐿 = 0

giving:

𝐶4 = 𝐶2
−cos 𝑘𝑛𝐿 − cosh 𝑘𝑛𝐿

sen 𝑘𝑛𝐿 + senh 𝑘𝑛𝐿

Finally, the solution 𝑋𝑛 𝑥 with the imposed conditions becomes:

𝑋𝑛 𝑥

= 𝐶2 ቊ

ቋ

cos 𝑘𝑛𝑥 − cosh 𝑘𝑛𝑥

+
−cos 𝑘𝑛𝐿 − cosh 𝑘𝑛𝐿

sen 𝑘𝑛𝐿 + senh 𝑘𝑛𝐿
sen 𝑘𝑛𝑥 − senh 𝑘𝑛𝑥

𝜕𝑋 𝑥

𝜕𝑥
= 𝐶2 −sen 𝑘𝑛𝑥 − senh 𝑘𝑛𝑥 + 𝐶4 cos 𝑘𝑛𝑥 − cosh 𝑘𝑛𝑥

5.7 QUARTZ-ENHANCED PHOTOACOUSTIC SPECTROSCOPY



132
SPETTROSCOPIA 

LASER

5.7.1 Quartz tuning fork: flexural modes

• The fourth boundary condition will be used to determine the eigenfrequencies:

𝜕3𝑋 𝐿

𝜕𝑥3

= 𝐶2 sen 𝑘𝑛𝐿 − senh 𝑘𝑛𝐿

+ 𝐶2
−cos 𝑘𝑛𝐿 − cosh 𝑘𝑛𝐿

sen 𝑘𝑛𝐿 + senh 𝑘𝑛𝐿
−cos 𝑘𝑛𝐿 − cosh 𝑘𝑛𝐿 = 0

then:

sen 𝑘𝑛𝐿 − senh 𝑘𝑛𝐿 = −
cos 𝑘𝑛𝐿 + cosh 𝑘𝑛𝐿

sen 𝑘𝑛𝐿 + senh 𝑘𝑛𝐿
cos 𝑘𝑛𝐿 + cosh 𝑘𝑛𝐿

from which:

sen2 𝑘𝑛𝐿 − senh2 𝑘𝑛𝐿 = − cos 𝑘𝑛𝐿 + cosh 𝑘𝑛𝐿
2

Expanding the square:

sen2 𝑘𝑛𝐿 − senh2 𝑘𝑛𝐿
= −cos2 𝑘𝑛𝐿 − cosh2 𝑘𝑛𝐿 − 2 cos 𝑘𝑛𝐿 cosh 𝑘𝑛𝐿

𝜕2𝑋 𝑥

𝜕𝑥2
= 𝐶2 −cos 𝑘𝑛𝑥 − cosh 𝑘𝑛𝑥 + 𝐶4 −sen 𝑘𝑛𝑥 − senh 𝑘𝑛𝑥

𝐶4 = 𝐶2
−cos 𝑘𝑛𝐿 − cosh 𝑘𝑛𝐿

sen 𝑘𝑛𝐿 + senh 𝑘𝑛𝐿
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5.7.1 Quartz tuning fork: flexural modes

Being sen2 𝑥 + cos2 𝑥 = 1 and cosh2 𝑥 − senh2 𝑥 = 1, then :

cos 𝑘𝑛𝐿 cosh 𝑘𝑛𝐿 = −1

This equation can be solved graphically in the variable 𝑘𝑛𝐿. 

The first three solutions are:

𝑘𝑛𝐿

co
s
𝑘
𝑛
𝐿
co
sh

𝑘
𝑛
𝐿

𝑦 = −1

1° SOL

2° SOL

𝑛 𝑘𝑛𝐿

1 1.875
2 4.694
3 7.855

sen2 𝑘𝑛𝐿 − senh2 𝑘𝑛𝐿 = −cos2 𝑘𝑛𝐿 − cosh2 𝑘𝑛𝐿 − 2 cos 𝑘𝑛𝐿 cosh 𝑘𝑛𝐿
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5.7.1 Quartz tuning fork: flexural modes

With the assumption made:

𝑘𝑛
4 =

𝜔𝑛
2𝜌𝐴

𝐸𝐼
We can directly determine the eigenfrequencies of the first three antisymmetric flexural

modes :

𝑓𝑛 =
𝜔𝑛

2𝜋
=

1

2𝜋

𝐸𝐼

𝜌𝐴
𝑘𝑛
2

For a cantilever with a rectangular section, it can be shown

that
𝐼

𝐴
=

1

12
𝑇, where 𝑇 is the thickness of the prong.

𝑓𝑛 =
1

2 12𝜋

𝐸

𝜌

𝑇

𝐿2
𝜐2

𝑛 𝑘𝑛𝐿

1 1.875
2 4.694
3 7.855

Using the values reported in the Table, defining 𝑘𝑛𝐿
2 = 𝜐2 , the 

eigenfrequencies are determined:
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5.7.1 Quartz tuning fork: flexural modes

𝑓𝑛 =
1

2 12𝜋

𝐸

𝜌

𝑇

𝐿2
𝜐2

where 𝜐 = 1.875 identifies the fundamental flexural mode

𝜐 = 4.694 the first flexural overtone mode;

𝜐 = 7.855 the second flexural overtone mode,

and so on for the higher harmonics.

𝑓1
𝑓0
=
4.6942

1.8752
≈ 6.26

In addition, the frequency 𝑓𝑛 of flexural modes depends:

o by the type of material (Young's modulus and density)

It is easy to verify that the first overtone mode (𝑛 = 1) has a frequency 6.26 times

higher than the fundamental one (𝑛 = 0):
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o depends on the geometry of the prong as:
𝑇

𝐿2

Ultimately, we can change the comb of the flexural modes of a quartz tuning fork by
varying the size and the geometry of its prongs.

Using the expression found for 

𝑋𝑛 𝑥

= 𝐶2 cos 𝑘𝑛𝑥 − cosh 𝑘𝑛𝑥 +
−cos 𝑘𝑛𝐿 − cosh 𝑘𝑛𝐿

sen 𝑘𝑛𝐿 + senh 𝑘𝑛𝐿
sen 𝑘𝑛𝑥 − senh 𝑘𝑛𝑥

we can graphically represent the lateral displacement of the prong while
it is vibrating at the fundamental and at the first overtone mode.

o it does not depend on the thickness 𝑤 of the crystal. This because the model

considers only motions in the plane of the tuning fork, and therefore the thickness

is neglected. Therefore, the model can be applied for all cases in which both

𝑤 and 𝐿 are larger than 𝑤.

𝑓𝑛 =
1

2 12𝜋

𝐸

𝜌

𝑇

𝐿2
𝜐2
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5.7.1 Quartz tuning fork: flexural modes

The fundamental mode has a
node point (at the base of the
prong) and an antinode point
(at the free end)

The first overtone mode has two
node points and two antinode
points (one at the free end and
the other almost at the half of
the prong length)

𝑋
1

𝑥 𝑚𝑚

𝑘1𝐿 = 1.875

𝐿 = 17 𝑚𝑚

Fundamental Mode

𝑥 𝑚𝑚

𝑋
2

1° Overtone Mode

𝑘2𝐿 = 4.694

𝐿 = 17 𝑚𝑚

𝑋𝑛 𝑥 = 𝐶2 cos 𝑘𝑛𝑥 − cosh 𝑘𝑛𝑥 +
−cos 𝑘𝑛𝐿 − cosh 𝑘𝑛𝐿

sen 𝑘𝑛𝐿 + senh 𝑘𝑛𝐿
sen 𝑘𝑛𝑥 − senh 𝑘𝑛𝑥

𝑛 𝑘𝑛𝐿

1 1.875
2 4.694
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5.7.2 Damping effects due to pressure
Considerations on the quality factor are more difficult to be treated with an analytical
model.

The quality factor is related to the losses of the system while it is oscillating.

It is difficult to determine an analytical model that considers all three loss
mechanisms. As a first assumption, we can consider that the most relevant loss
mechanism is the interaction with air and neglect the other two.

The factors contributing to the losses are:

o air damping
o support losses
o Thermoelastic damping
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5.7.2 Damping effects due to pressure

In QEPAS the tuning fork is immersed in the gas to be detected.

When the tuning fork undergoes harmonic oscillations of small amplitude in a fluid, it
tends to induce particles motion in the fluid which gives rise to energy loss and
additional inertia. Since the molecular mean free path is much smaller than the
characteristic length of the structure, the gas behaves entirely as a continuous fluid. This
generates:

The Euler-Bernoulli equation will change as:

𝐸𝐼
)𝜕4𝑦(𝑥, 𝑡

𝜕𝑥4
+ 𝐶𝑑

)𝜕𝑦(𝑥, 𝑡

𝜕𝑡
+ 𝜌𝐴 + 𝑢

)𝜕2𝑦(𝑥, 𝑡

𝜕𝑡2
= 0

where 𝐶𝑑 is the damping parameter and 𝑢 the added mass
per unit length.

What happens to the resonance properties of the tuning fork (the frequency and the
quality factor) when the thermodynamic parameters of gas change?

If we assume that the tuning fork is at thermal equilibrium, the study can be reduced to
analyze the dependence of the tuning fork resonance properties on gas pressure.

o a viscous friction proportional to speed of molecules

𝐸𝐼
)𝜕4𝑦(𝑥, 𝑡

𝜕𝑥4
+ 𝜌𝐴

)𝜕2𝑦(𝑥, 𝑡

𝜕𝑡2
= 0

o a virtual increase of the oscillating mass that in the Euler-Bernoulli
equation is included as an additive mass term

5.7 QUARTZ-ENHANCED PHOTOACOUSTIC SPECTROSCOPY



140
SPETTROSCOPIA 

LASER

5.7.2 Damping effects due to pressure

Let’s suppose that the eigenfrequencies are not affected by viscous damping, but are

mainly influenced by the additional mass (a legitimate hypothesis if we consider that

the resonance frequencies strongly depend on the geometry of the tuning fork).

𝑓′𝑛 =
1

2 12𝜋

𝐸𝐼

𝜌𝐴 + 𝑢
𝑘𝑛
2

We can estimate the change in frequency ∆𝑓 due to the presence of a gas compared 

to the case in which the tuning fork oscillates in a vacuum:

∆𝑓 =
𝑓𝑛 − 𝑓′𝑛

𝑓𝑛
=

1

𝜌𝐴
−

1

𝜌𝐴 + 𝑢

1

𝜌𝐴

= 1 −
𝜌𝐴

𝜌𝐴 + 𝑢
= 1 −

1

1 +
𝑢
𝜌𝐴

In this approximation, the resonance frequencies will change as:

𝑓𝑛 =
1

2𝜋

𝐸𝐼

𝜌𝐴
𝑘𝑛
2
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5.7.2 Damping effects due to pressure

Assuming that 𝑢 ≪ 𝜌𝐴, 
𝑢

𝜌𝐴
≪ 1 and using: 

1

1+𝑥
≈ 1 −

𝑥

2
for 𝑥 ≪ 1, one obtain:

∆𝑓 = −
1

2

𝑢

𝜌𝐴

The frequency of the tuning fork decreases linearly while the added mass increases.

Since the relationship between pressure and density for a gas is of

simple proportionality: 𝑃 ∝ 𝜌0 , we can conclude that ∆𝑓 varies

linearly with the gas pressure.

The rigorous derivation of the
additional mass 𝑢 is a problem of not
ease solution even for simple structures
or geometries; in a first approximation,
the additional mass can be supposed
proportional to the density 𝜌0 of the
surrounding gas.

∆𝑓 = 1 −
1

1 +
𝑢
𝜌𝐴

𝐿 = 3.5 𝑚𝑚
𝑇 = 0.2 𝑚𝑚

∆𝑓

𝑓
=

6 Hz

14047 𝐻𝑧
~4 ∙ 10−4
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5.7.2 Damping effects due to pressure

However, the damping of the motion by the gas negatively affects also the quality factor:

in fact, the reaction force to the vibration motion causes energy dissipation.

𝐶𝑑 =
1

)𝑄(𝑃
−

1

𝑄0

where 𝑄0 is the Q factor contribution in vacuum which depends 
exclusively on internal losses (support losses and thermoelastic 
damping).

Assuming that the viscous drag force of the gas is the only source of damping, as

prescribed by the Euler-Bernoulli theory, the gas damping parameter is proportional to

𝐶𝑑 ∝ 𝜌0

The influence of damping on the quality factor 𝑄 can be expressed in terms of

energy dissipation 1/𝑄(𝑃) at gas pressure 𝑃, thus:

Using the ideal gas law, 𝐶𝑑 = 𝑎 𝑃, where 𝑎 is the constant of proportionality. 
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5.7.2 Damping effects due to pressure

Including 𝐶𝑑 = 𝑎 𝑃, we can derive the dependence of the quality factor on pressure:

𝑄 𝑃 =
𝑄0

1 + 𝑄0𝑎 𝑃

Thus, it is expected that the QEPAS sensitivity is a function of the gas sample pressure 

because the QEPAS signal is proportional to the quality factor of the tuning fork. 

𝐿 = 3.5 𝑚𝑚
𝑇 = 0.2 𝑚𝑚

𝐶𝑑 =
1

)𝑄(𝑃
−

1

𝑄0
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5.7.2 Damping effects due to pressure

o the Q factor decreases with increasing pressure

Variations in frequency due to pressure are negligible, so only
Q(P) will give its contribution.

Since these two trends are in

opposition, this suggests that

the QEPAS signal can be

optimized as a function of

pressure, in a sort of trade-off

between these two trends.

What happens to the QEPAS signal if the gas pressure changes?

As the pressure changes, there are two trends to be considered:

o the transfer of energy in the no radiative relaxation processes are faster at higher

pressure (because each molecule can count on more nearest neighbors), resulting

in a more efficient generation of the sound wave.
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Comparing different spectroscopic techniques is a complicated problem.

The noise level is calculated as the standard deviation (1σ) of the

sensor response in the condition of no optical absorption.

The starting point is to determine the detection limit of a sensor. This is usually expressed

in terms of Noise Equivalent Concentration (NEC) and is strictly defined as the

concentration of the gas to be detected whose signal equals the noise level. In other

words, the NEC is estimated at a signal-to-noise ratio (SNR) of 1.

The objective is to find a figure of merit that can be used for all spectroscopic techniques.

This figure of merit must then be normalized with respect to operating parameters that

affect the ultimate performance, but not the technique itself.

The noise level can be calculated in the following way. Let us consider a

generic gas sensor:
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The condition of no optical absorption can be achieved under two conditions:

If, for example, the sensor detects carbon dioxide (concentration 400

parts per million) in air, the noise measurement can be done by filling

the cell with pure nitrogen (N2) at atmospheric pressure, being the air

composed of about 78% nitrogen.

o Removing the target gas concentration from the absorption cell

This condition could be achieved by completely emptying the absorption cell.

This way is not the best one because the experimental condition that would be

realized for the measurement of noise is substantially different from the condition

in which there is the gas in the cell.

To preserve the experimental conditions as much as possible, it is convenient

to fill the cell with the same gas matrix, but without the target gas.



5.8 COMPARING DIFFERENT SPECTROSCOPIC 
TECHNIQUES

147
SPETTROSCOPIA 

LASER

• Tuning the laser to a wavelength far from the absorption curve of the gaseous

species

Of course, the two conditions can also be realized simultaneously.

ҧ𝑥 =
1

𝑁


𝑖=1

𝑁

𝑥𝑖1𝜎 = 

𝑖=1

𝑁
𝑥𝑖 − ҧ𝑥 2

𝑁

where 𝑁 is the number of samples 𝑥𝑖 acquired in a time interval 𝑇.

with

We then proceed to acquire the detector signal with a sampling ∆𝑡 for a total time 𝑇.

When 𝑁 = 𝑇/∆𝑡 samples are acquired, a statistical analysis can be

performed to determine the 1𝜎 standard deviation
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𝑁 = 15000 samples acquired every ∆𝑡 = 0.1 𝑠 for a total time of 𝑇 = 25 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

The mean value of x ̅=0.0408 mV represents the signal in the absence of

absorption. It is typically referred to as an offset and can be subtracted from the

signal measured in the presence of absorption.

ҧ𝑥 = 0.0408 mV

+0.0198 𝑚𝑉

−0.0198 𝑚𝑉

The noise level measured at 1𝜎 (1𝜎-noise level) is ±0.0198 mV
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5.8.1 Minimum absorption coefficient

𝛼𝑖𝑘 𝜔 = 𝑁𝑖𝜎𝑖𝑘 𝜔

The minimum absorption coefficient 𝛼𝑚𝑖𝑛 represents the estimated absorption

coefficient at the minimum detectable concentration, namely NEC.

with 𝑁𝑖 density of absorbent molecules, 𝜎𝑖𝑘 𝜔 optical absorption cross section.

𝜎𝑖𝑘 𝜔 = 𝑆𝐼 𝜔 − 𝜔0 =
𝑆

𝜋

𝛾

𝜔 − 𝜔0
2 + 𝛾2

where 𝜔0 is the frequency at the maximum absorption and γ the FWHM  

The cross section at the absorption peak (𝜔 = 𝜔0) will be:

𝜎𝑖𝑘 𝜔0 =
𝑆

𝛾𝜋

The cross section of the process can be expressed as the product between the 
linestrength 𝑆 of the transition and its normalized Lorentzian line profile 𝐼 𝜔 − 𝜔0 :  

Let's start from the expression of the absorption coefficient for a generic optical

transition | ۧ𝑖 → | ۧ𝑘 :
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5.8.1 Minimum absorption coefficient

𝛼𝑚𝑖𝑛 = 𝑁𝑖𝜎 = 𝑁𝑖
𝑆

𝛾𝜋

The minimum absorption coefficient 𝛼𝑚𝑖𝑛 at the absorption peak (i.e. with the laser

tuned to 𝜔 = 𝜔0) will be:

The 𝑁𝑖 density of the absorbing molecules can be expressed as the product with the
molecular density 𝑁𝑇𝑂𝑇 and the minimum detectable concentration 𝑐𝑚𝑖𝑛 of the target
molecules, i.e.

𝑁𝑖 = 𝑐𝑚𝑖𝑛𝑁𝑇𝑂𝑇

Considering the equation of the ideal gas law:

𝑃𝑉 = 𝑛𝑅𝑇

where 𝑃 is the gas pressure, 𝑉 the volume, 𝑇 the temperature, 𝑛 the number of 
moles, and 𝑅 the ideal gas constant. 

𝑛 =
𝑛𝑇𝑂𝑇
𝑁𝐴

𝛼𝑖𝑘 𝜔 = 𝑁𝑖𝜎𝑖𝑘 𝜔

𝜎𝑖𝑘 𝜔0 =
𝑆

𝛾𝜋

The number of moles is equal to the total number of molecules 𝑛𝑇𝑂𝑇
divided by the Avogadro number 𝑁𝐴:
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5.8.1 Minimum absorption coefficient

The equation of the ideal gas law becomes:

𝑃𝑉 =
𝑛𝑇𝑂𝑇
𝑁𝐴

𝑅𝑇

Whereas the molecular density is equal to:

𝑁𝑇𝑂𝑇 =
𝑛𝑇𝑂𝑇
𝑉

from the equation of the ideal gas law we get

𝑁𝑇𝑂𝑇 =
𝑃𝑁𝐴
𝑅𝑇

Finally, the minimum absorption coefficient 𝛼𝑚𝑖𝑛 can be expressed as a 
function of 𝑐𝑚𝑖𝑛 and of thermodynamic parameters of the gas sample:

𝛼𝑚𝑖𝑛 = 𝑁𝑖𝜎 = 𝑐𝑚𝑖𝑛

𝑃𝑁𝐴
𝑅𝑇

𝑆

𝛾𝜋

𝑃𝑉 = 𝑛𝑅𝑇

𝑛 =
𝑛𝑇𝑂𝑇
𝑁𝐴

𝛼𝑚𝑖𝑛 = 𝑁𝑖𝜎 = 𝑁𝑖
𝑆

𝛾𝜋
𝑁𝑖 = 𝑐𝑚𝑖𝑛𝑁𝑇𝑂𝑇
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5.8.1 Minimum absorption coefficient

The concentration of a gaseous species is therefore defined as the percentage

(fraction) of absorbing molecules compared to the total number of molecules of the

gas sample.

Fraction Name Symbol

1: 100 Percent %

1: 103 Part-per-thousand ‰

1: 106 Part-per-million ppm

1: 109 Part-per-billion ppb

1: 1012 Part-per-trillion ppt

1: 1015 Part-per-quadrillion ppq

It is therefore a dimensionless quantity, and the following nomenclature in English is

largely employed in literature.
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5.8.2 Normalized Noise Equivalent Absorption (NNEA)

The minimum absorption coefficient 𝛼𝑚𝑖𝑛 estimates the minimum detectable

absorption.

Therefore, the Normalized Noise Equivalent Absorption (NNEA) is
introduced as a figure of merit and defined as 𝛼𝑚𝑖𝑛 normalized with respect
to the power of the laser 𝑃𝐿 and the bandwidth of the detector Δ𝑓 :

𝑁𝑁𝐸𝐴 =
𝑃𝐿 ∙ 𝛼𝑚𝑖𝑛

∆𝑓

o The power of the laser. Comparing two sensors with the same estimated 𝛼𝑚𝑖𝑛, the

sensor that uses less laser power is to be considered as more efficient.

However, it is a parameter that depends exclusively on the chosen absorption line, the

thermodynamic conditions of the gas sample and the noise level of the acquired signal.

It does not consider two fundamental operating parameters:

o The integration time of the detector signal. Comparing two sensors with the same

estimated 𝛼𝑚𝑖𝑛, the sensor that uses lower integration times (and therefore fast

response time) is to be considered more efficient.
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5.8.2 Normalized Noise Equivalent Absorption (NNEA)

𝑁𝑁𝐸𝐴 =
𝑃𝐿 ∙ 𝛼𝑚𝑖𝑛

∆𝑓

where the bandwidth of a detector is related to the integration time 𝜏 of the signal by the
relation:

𝜏 ∝
1

2𝜋Δ𝑓

The unit of NNEA is:

𝑁𝑁𝐸𝐴
𝑊𝑐𝑚−1

𝐻𝑧1/2

As it has been defined, comparing different sensors with each other, the
sensor that shows lower NNEAs is to be considered more performing.



5.8 COMPARING DIFFERENT SPECTROSCOPIC 
TECHNIQUES

155
SPETTROSCOPIA 

LASER

5.8.2 Normalized Noise Equivalent Absorption (NNEA)

The NNEA is largely used in literature to compare different optical techniques. The
graph shows the NNEAs achieved by the various techniques as a function of the
effective optical pathlength.
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EXERCISE 

An optical sensor for sulfur dioxide (SO2) detection uses a multipass cell and a

quantum cascade laser tuned at the SO2 absorption line centered at 1350.82 cm-1,

having a linestrength of S = 4.85∙10−20 cm/molecules and a spectral broadening of

0.0051 cm-1 at a working pressure P = 50 torr. When the SO2 concentration SO2 in N2

is equal to 20 ppm, the acquired signal is 158 μV with fluctuations having a standard

deviation (1σ) equal to 2.2 μV, with a signal acquisition time of 𝜏 = 100 ms. Being the

laser power equal to 𝑃𝐿 = 5 mW, determine the NNEA of the sulfur dioxide sensor.

ESERCIZIO 1

STRUMENTAZIONE 

SPETTROSCOPICA

To determine the NNEA of the sensor, the minimum absorption coefficient
𝛼𝑚𝑖𝑛 must first be estimated:

𝛼𝑚𝑖𝑛 = 𝑁𝑚𝑖𝑛𝜎

with 𝑁𝑚𝑖𝑛 is the minimum detectable density of SO2 molecules and 𝜎 the
optical cross-section.
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𝜎 =
𝑆

𝛾𝜋
=
4.85 ∙ 10−20

𝑐𝑚
𝑚𝑜𝑙𝑒𝑐𝑜𝑙𝑒

0.0051 𝑐𝑚−1 ∙ 3.14
= 3.03 ∙ 10−18

𝑐𝑚2

𝑚𝑜𝑙𝑒𝑐𝑜𝑙𝑒

The cross section will be equal to:

Using the ideal gas law, we have seen that the molecular density 𝑁𝑚𝑖𝑛 an be related to 
the minimum detectable concentration of SO2 molecules:

𝑁𝑚𝑖𝑛 = 𝑐𝑚𝑖𝑛

𝑃𝑁𝐴
𝑅𝑇

where 𝑃 = 50 𝑡𝑜𝑟𝑟 = 0.0658 𝑎𝑡𝑚 is the gas pressure,𝑅 = 82.1
𝑐𝑚3∙𝑎𝑡𝑚

𝑚𝑜𝑙𝑒𝑐𝑜𝑙𝑒∙𝐾
is the

ideal gas constant, 𝑇 = 295 𝐾 is the temperature, and 𝑁𝐴 = 6 ∙ 1023
𝑚𝑜𝑙𝑒𝑐𝑜𝑙𝑒

𝑚𝑜𝑙𝑖
is

the Avogadro number.

𝑐𝑚𝑖𝑛 =
𝑅𝑢𝑚𝑜𝑟𝑒 (1𝜎)

𝑆𝑒𝑔𝑛𝑎𝑙𝑒
∙ 20 𝑝𝑝𝑚 =

2.2 𝜇𝑉

158 𝜇𝑉
∙ 20 𝑝𝑝𝑚 = 278 𝑝𝑝𝑏

𝑐𝑚𝑖𝑛 is the minimum detectable concentration, corresponding to a signal-to-
noise ratio of 1:
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𝑁𝑚𝑖𝑛 = 𝑐𝑚𝑖𝑛

𝑃𝑁𝐴
𝑅𝑇

= 278 ∙ 10−9
0.0658 𝑎𝑡𝑚 ∙ 6 ∙ 1023

𝑚𝑜𝑙𝑒𝑐𝑜𝑙𝑒
𝑚𝑜𝑙𝑖

82.1
𝑐𝑚3 ∙ 𝑎𝑡𝑚
𝑚𝑜𝑙𝑖 ∙ 𝐾

∙ 295𝐾
= 4.53 ∙ 1011

𝑚𝑜𝑙𝑒𝑐𝑜𝑙𝑒

𝑐𝑚3

Thus, the minimum absorption coefficient will be:

𝛼𝑚𝑖𝑛 = 𝑁𝑚𝑖𝑛𝜎 = 4.53 ∙ 1011
𝑚𝑜𝑙𝑒𝑐𝑜𝑙𝑒

𝑐𝑚3 ∙ 3.03 ∙ 10−18
𝑐𝑚2

𝑚𝑜𝑙𝑒𝑐𝑜𝑙𝑒
= 1.37 ∙ 10−6𝑐𝑚−1

and the 𝑁𝑁𝐸𝐴 will be:

𝑁𝑁𝐸𝐴 =
𝑃𝐿 ∙ 𝛼𝑚𝑖𝑛

∆𝑓

For 𝜏=100 ms the bandwidth of the photodetector will be:

Δ𝑓 ∝
1

2𝜋𝜏
= 1.59 𝐻𝑧

leading to:

𝑁𝑁𝐸𝐴 =
𝑃𝐿 ∙ 𝛼𝑚𝑖𝑛

∆𝑓
=
0.005 𝑊 ∙ 1.37 ∙ 10−6𝑐𝑚−1

1.59 𝐻𝑧
= 5.43 ∙ 10−9

𝑊𝑐𝑚−1

𝐻𝑧


