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A B S T R A C T   

We report on the development of a highly sensitive hydrogen sulfide (H2S) gas sensor exploiting the doubly 
resonant photoacoustic spectroscopy technique and using a near-infrared laser emitting at 1578.128 nm. By 
targeting the R(4) transition of H2S, we achieved a minimum detection limit of 10 part per billion in concen-
tration and a normalized noise equivalent absorption coefficient of 8.9 × 10− 12 W cm− 1 Hz− 1/2. A laser-cavity- 
molecule locking strategy is proposed to enhance the sensor stability for fast measurement when dealing with 
external disturbances. A comparison among the state-of-the-art H2S sensors using various spectroscopic tech-
niques confirmed the record sensitivity achieved in this work.   

1. Introduction 

Hydrogen sulfide (H2S) is a gas species of great importance for 
numerous application fields, such as environmental monitoring [1], 
petrochemical processes [2,3] and medical treatment [4], where its 
concentration or variation trend usually needs to be accurately 
measured. With characteristic odor of rotten eggs at ultralow concen-
tration, H2S is one of the most highly toxic, corrosive, and flammable 
gas, which can cause dizziness, nausea, eye injury, and even asphyxia-
tion, shock or convulsions [3,5]. Apart from personal safety, H2S can 
also corrode metallic equipment, resulting in economic losses [6,7]. 
Besides, H2S not only is an indicator of food spoilage [8–10], but also has 
emerged as a endogenous signal molecule with crucial pathophysio-
logical roles in cardiovascular function [11]. Very recently, ppb-level 
trace H2S has also been used as a biomarker for the early diagnosis 
and therapy of lung diseases such like asthma [4]. Its quantitative and 
fast determination in the few parts-per-billion (ppb) concentration range 
is critically required in these multidisciplinary domains for fundamental 
or applied research but still remains challenging for reliable sensors. 

With continuous contributions from the scientific community, 

different H2S detection approaches emerge from simple colorimetric 
assays [12] to precise techniques, such as chromatography [13,14], 
metal-oxide semiconductor [15,16], nanoparticle [17], organic thin film 
[18], and laser spectroscopy [19]. Gas chromatography, as a commercial 
instrument, has been employed the most frequently, but it can hardly 
achieve atmospheric H2S detection down to ppb level [14]. The elec-
trochemical sensors show high sensitivity to H2S with a ppb-level 
detection limit [15,16,18], but they are readily affected by tempera-
ture and humidity variations [14]. Tunable diode laser absorption 
spectroscopy (TDLAS), the most common laser spectroscopic mecha-
nism for trace gas detection, highlights itself with unique advantages of 
high selectivity, high sensitivity, and fast response. With the assistance 
of a multipass cell (MPC) to extend the light-gas interaction length [21], 
TDLAS achieved trace H2S measurement with a sensitivity of 80 ppb in 
mid-IR (8 µm) [19]. The absorption path length can be further increased 
to several kilometers by a high-finesse optical cavity [22–24]. Off-axis 
integrated cavity output spectroscopy (ICOS) [23] and cavity 
ring-down spectroscopy (CRDS), for instance, have contributed to 
breakthroughs in H2S detection, particularly a detection limit of 20 ppb 
[25]. However, the technical limitations, such as limited dynamic range 
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due to the intracavity absorption [26], etalon effects superposed on 
photodetectors [27], and bulky chamber with a large gas consumption, 
may restrict its wide applications out of laboratory. 

Photoacoustic spectroscopy serves as an alternative option with wide 
dynamic range, excitation wavelength independence, and no need for 
photodetectors, which has been demonstrated for the detection of 
numerous inorganic and organic trace gases [20,28–41]. Particularly, 
exploiting a tiny quartz tuning fork (QTF) [42–45] as the acoustic 
transducer provides practical attraction with high sensitivity, good im-
munity to environmental acoustic noise, tiny size, low cost, and 
ultra-low gas consumption [46]. The acoustic signal scales linearly with 
laser power, rather than a long absorption path. Thus, by employing an 
erbium-doped fiber amplifier (EDFA) to boost the excitation laser 
power, a detection sensitivity of 17 ppb for H2S was achieved at atmo-
spheric pressure and room temperature [35]. The photoacoustic signal 
can also be efficiently enhanced by the employment of a multi-pass 
optical configuration [47] or the direct utilization of high intracavity 
power inside a laser resonator [48,49]. 

In recent years, optical resonators have proven to be a powerful tool, 
which can enhance the laser power by several orders of magnitude [50, 
51]. It is worth mentioning that a doubly resonant PAS-based gas sensor, 
by integrating an optical resonator and an acoustic resonator, achieved a 
record sensitivity of 10− 13 cm− 1 (NEA) and an unprecedent dynamic 
range of eight orders of magnitude simultaneously [52]. In that sensor, 
scanning of the whole spectra required slow frequency ramps or 
continuous relocking of the laser to the cavity in a stepwise manner. This 
affected the measurement time, stretching it up to several minutes. It is 
well known that in traditional PAS works, the measurement speed can 
be increased when the laser wavelength is locked to the selected mo-
lecular absorption lines [41,53]. In the cavity-enhanced PAS, this line 
locking method was lacking. 

In this paper, we develop a highly sensitive H2S sensor, which blends 
the doubly resonant PAS, an opto-acoustic resonance approach that can 
generate significantly enhanced photoacoustic waves, with a laser- 
cavity-molecule locking strategy, a spectroscopic method to stabilize 
the laser frequency. Rather than scanning the entire spectrum, the 
locking strategy enables the simultaneous locking of the laser frequency 
and the cavity mode to an absorption line, which yields a fast response 
and an enhancement of the system stability. Choosing a near-infrared 
absorption line (1578.128 nm) of H2S as the investigation target, we 
demonstrate the continuous H2S measurement with a noise equivalent 
concentration (NEC) of 10 ppb for integration time of 200 s, a normal-
ized noise equivalent absorption (NNEA) coefficient of 8.9 × 10− 12 W 
cm− 1 Hz− 1/2, and a dynamic range of four orders of magnitude. 

2. Experimental setup 

Fig. 1 illustrates the sensor configuration for trace H2S measurement. 
The double resonance structure is placed inside a vacuum chamber 
equipped with two wedged CaF2 windows for optical access. An optical 
resonator, formed by a pair of cavity mirrors with a reflectivity 

exceeding 0.9985 and a radius of curvature of 50 mm, has been spe-
cifically arranged with a QTF detection system inside. The optical 
resonator has a length of 80 mm in this work, corresponding to a free 
spectral range (FSR) of 1.875 GHz. The intracavity laser beam (beam 
waist: 100 µm) propagates through an acoustic detection module with 
two on-beam acoustic resonators (inner diameter: 1.6 mm; length: 12.4 
mm) and a custom QTF (prong space: 800 µm). This custom QTF, 
fabricated at PolySense Lab, has a resonant frequency of 12.452 kHz at 1 
bar. 

As shown in Fig. 1, the optical path is indicated by the red connecting 
lines. An external cavity diode laser (ECDL, CTL1550, TOPTICA Pho-
tonics) emitting at 1578.128 nm is used as the laser source to target the 
R(4) transition of H2S. With a polarization-maintaining beam splitter, a 
small fraction of the laser (10 %) interrogates a reference cell filled with 
pure H2S (see Appendix A) and impinges on PD1. The rest of the laser 
(90 %), shaped by mode matching lenses, is coupled into the optical 
resonator for power buildup. The reflected laser beam, by the optical 
cavity, is picked out by a quarter-wave plate and a polarization beam 
splitter and then is detected by PD2. The coupling efficiency of incident 
power has been achieved to be 93.8 % (see Appendix B) by using two 
mode matching lenses (focus length: L1 = 30 mm and L2 = 50 mm). 

Black lines in Fig. 1 indicate the electrical connections used to 
perform the laser-cavity-molecule locking strategy. With the laser 
emission as the carrier frequency, two pairs of sidebands are simulta-
neously generated by an electro-optic phase modulator (EOM, iXblue 
Photonics). A Pound-Drever-Hall (PDH) error is demodulated by the 
PDD with a reference of 20 MHz [54]. Both the current feedback loop 
and piezo transducer (PZT) feedback loop of the ECDL are used to tightly 
lock the laser to the optical resonator via a 
proportional-integration-differentiation controller (PID1) (FALC 110, 
TOPTICA Photonics). To perform the locking to the molecular absorp-
tion line, another pair of sidebands is generated by applying a 100 MHz 
modulation (FG1) on the same EOM. By mixing the photodetector (PD1) 
signal with a 100 MHz reference, the error signal is retrieved to 
PID-control a PZT actuator, which is attached to the rear cavity mirror. 
In this way, while the laser is locked to the cavity (PDH), the mismatch 
between laser and molecule line can be compensated by tuning the 
cavity length. As a result, both separate locking operations enable the 
simultaneous locking of the laser frequency and the cavity mode to the 
absorption line, the bandwidth of which are about 10 MHz and 5 kHz, 
respectively. 

With the laser-cavity-molecule locking achieved, the laser intensity 
is modulated by a high-speed lithium niobate optical switch (Nano-
Speed, Agiltron) at the resonance frequency (f0) of the custom QTF. The 
signal from the QTF, converted to voltage by a trans-impedance 
amplifier, is finally demodulated at the frequency f0 by a lock-in 
amplifier (MFLI 5 MHz, Zurich Instruments). The process for obtaining 
the photoacoustic signal is indicated by the blue dash lines in Fig. 1. 

Fig. 1. Schematic configuration of doubly resonant PAS 
with the laser-cavity-molecule locking strategy. ECDL, 
external cavity diode laser; EOM, electro-optic modulator; 
FG1,2, function generator; PDD, the Pound-Drever-Hall 
Detector; PID1,2, proportion-integration-differentiation 
controller; PZT driver, piezo transducer driver; TIA, trans- 
impedance amplifier; LIA, lock-in amplifier; OS, optical 
switch; FC, fiber collimator; PBS, polarization beam 
splitter; QWP, quarter-wave plate; L1,2, mode matching 
lens; PD1,2, photodetector; RC, reference cell.   
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3. Results and discussion 

3.1. Spectra of photoacoustic H2S signals and error signals 

Using the approach described in our recent work [52], the power 
buildup factor and acoustic enhancement factor are evaluated to be 
about 600 and 30, respectively. Before demonstrating the continuous 
photoacoustic measurement at the absorption transition, we measured 
the complete spectra of photoacoustic H2S signals as well as error signals 
to determine the locking points. Fig. 2a presents the representative 
spectra of photoacoustic H2S signals of three different concentrations at 
a pressure of 1 bar and room temperature (23 ± 1℃), measured in a 
stepwise manner in 5 min. The laser and the optical cavity were relocked 
for each measurement. The obtained data points can be fitted well with 

data obtained from the HITRAN database [55], and both the strong 
absorption line R(4) and the relatively small absorption line Q(7) of H2S 
can be retrieved. 

By scanning the laser wavelength, Fig. 2b shows the representative 
transmissions and error signals for the laser-molecule locking and laser- 
cavity locking, respectively. In the upper panel of Fig. 2b, the center 
zero-point corresponds to the peak of the PAS signal shown in Fig. 2a. In 
the bottom panel of Fig. 2b, the center zero-point of the PDH error signal 
corresponds to the peak of cavity transmission. 

3.2. Molecular line-locking evaluation 

To evaluate the performance of the laser-cavity-molecule locking 
strategy, a comparative test was performed, with and without molecular 
line-locking. With 40 ppm H2S filled in the gas chamber, the laser 
wavelength was firstly tuned to the absorption line center without 
implementing the molecular line-locking. As shown in Fig. 3a, the PAS- 
1f signal decreases because the cavity length slowly drifts with the room 
temperature change. With the laser-cavity-molecule locking activated, 
the signal remains stable for more than 1.5 h. Besides, we purposely 
applied external heating on the gas chamber to introduce disturbance to 
the optical resonator length. With the polyimide heating film attached to 
the exterior surface of the gas chamber, a driver with a low power of 
24 W was used for heating. Each external heating event lasted a short 
time (~ 3 s) and gas temperature inside the chamber had little change 
during the disturbance. However, the laser is very sensitive to the 
resonator length variation. Fig. 3b shows that the PAS-1f signal, with 
only laser-cavity locking, varies sharply due to the drift of laser wave-
length with the heat disturbance. Conversely, when the laser-cavity- 
molecule locking is activated, the PAS-1f signal remains stable under 
the same external heating disturbance. The PID output shows the real- 
time compensation for the cavity length variation caused by the tem-
perature change. From the activation of PID2 at about 300 s, it starts to 
compensate for the drift caused by the previous external heating, and the 
three spikes show the compensations to three corresponding heating 
disturbances. 

In this way, laser, optical cavity, and molecular absorption line are 
tightly locked with high immunity to laser wavelength drift and cavity 
length variation induced by environmental disturbances. The PAS-1f 
signal can thus be acquired continuously with no need for scanning 
the entire spectrum. Hence, the sensor response time is only limited by 
the integration time of QTF and the gas exchange rate. 

Fig. 2. The spectra of H2S PAS-1f signals and error signals. (a) Representative PAS-1f signals of 40 ppm, 10 ppm, and 3 ppm H2S:N2 gas samples (1 bar). Solid line: 
the overall spectral fit of the experimental data with HITRAN database. (b) Typical transmissions (black curves) and error signals (green curves) for the laser- 
molecule locking (upper panel) and laser-cavity locking (bottom panel), respectively. 

Fig. 3. Performance of molecular line-locking. (a) Under slowly varied room 
temperature, PAS-1f signal drifts without line-locking and remains long-term 
stable with line-locking. (b) Under external heating disturbances, PAS-1f 
signal drifts accordingly without line-locking while remains rather stable with 
real-time compensation for the cavity length. The PID output refers to the laser- 
molecule locking loop. 
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3.3. Performance assessment of H2S sensor 

After proving the high immunity to external disturbances and satis-
factory system stability by the laser-cavity-molecule locking, we further 
evaluated its performance to detect trace H2S gas. Considering the 
possible harm to the human body caused by high H2S concentration, its 
concentration in the experimental measurement was set below 
100 ppm. The mixtures were prepared by diluting a certified mixture of 
98 ppm H2S in pure nitrogen (purity 99.999 %) using a commercial gas 
mixer (Sonimix 7100, LNI Swissgas) at 1 bar. Fig. 4a shows the contin-
uous measurement of the H2S sample at different concentrations, with a 
duration time of 60 s for each concentration. As shown in Fig. 4b, the 
sensor responsivity is illustrated by plotting the PAS-1f signal as a 
function of the H2S concentration between 0.3 ppm and 98 ppm. The 

vertical error bars are obtained by evaluating the uncertainty of the PAS- 
1f signal magnitude (1-σ standard deviation of the noise). Due to the 
extremely high signal-to-noise ratio (SNR), error bars are magnified by 
20 times for the sake of clarity. The sensor shows a good linear response 
with a slope of 0.00625 V/ppm and an R-square value of 0.99989. 

To investigate the minimum detection limit (MDL) and the long-term 
stability of the sensor, we performed an Allan-Werle deviation analysis 
of a measurement of pure N2 for > 2 h with the laser-cavity-molecule 
locking activated. The results are shown in Fig. 5. The MDL is deter-
mined to be 79 ppb, also estimated as the NEC, at an integration time of 
1 s, leading to a NNEA coefficient of 8.9 × 10− 12 W cm− 1 Hz− 1/2 with an 
incident optical power of 6.5 mW. The Allan-Werle deviation plot fol-
lows a 1/√t dependence, and the MDL can reach 10 ppb at an inte-
gration time of 200 s. The system is capable of averaging on a more than 
1000 s time scale, which, as compared with previous cavity enhanced 
PAS works, also benefits from the high stability of the laser-cavity- 
molecule locking strategy [52]. The MDL of 10 ppb, together with the 
highest concentration of 98 ppm we employed, determines the linear 
dynamic range to be about 9.8 × 103, which could serve as a powerful 
analysis tool in many applications, such as medical diagnosis [4], food 

Fig. 4. (a) Stepwise measurement of the gas mixtures with increasing H2S concentration. (b) PAS-1f signal versus H2S concentration from 0.3 ppm to 98 ppm.  

Fig. 5. Long-term stability analysis for pure N2 gas sample. The upper panel 
shows the Allan-Werle deviation as a function of the acquisition time. The 
bottom panel depicts the raw data of noise measured for over 2 h. Note that the 
detection bandwidth is the same as the signal measurement (1 Hz). 

Fig. 6. Comparison among the state-of-the-art H2S sensors, from near-IR to 
THz. All points labeled as squares refer to the MDL and those labeled as stars 
refer to the NNEA. 
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quality and safety monitoring [8,56], where H2S measurements from 
few ppb to several tens of ppm level is needed. 

In Fig. 6, we further compare the sensor performance in this work 
with the H2S sensors based on other spectroscopic technologies, such as 
multipass-cell (MPC) assisted absorption spectroscopy [19,21], PAS 
(QEPAS included) [28,32,35–37,40], cavity-enhanced absorption 
(CEAS) [22], ICOS [23] and CRDS [24,25]. It is evident that this work 
shows the best performance in both MDL and NNEA among all reported 
H2S sensors. Compared with the state-of-the-art PAS H2S sensors, this 
sensor achieves an improvement of 1.5 times in MDL [35] and 50 times 
in NNEA [37]. Moreover, the sensor can potentially achieve a much 
better MDL with a commercially available optical power amplifier 
because of the linear relationship between the PAS sensitivity and the 
incident laser power [52]. 

4. Conclusion 

In conclusion, we demonstrate highly sensitive H2S gas sensing based 
on doubly resonant photoacoustic spectroscopy for fast H2S detection. A 

strategy of laser-cavity-molecule locking is proposed to achieve 
continuous measurement. The sensor shows a linear responsivity and a 
good linear response for a concentration variation of four orders of 
magnitude. Furthermore, with an incident optical power of 6.5 mW, we 
have demonstrated a minimum detection limit of 79 ppb at 1 s inte-
gration time, corresponding to a NNEA coefficient of 8.9 × 10− 12 

W cm− 1 Hz− 1/2 for H2S measurement. By fully exploiting the stability of 
the proposed H2S sensor, the integration time can be increased to 200 s, 
reaching a record MDL of 10 ppb. Moreover, the H2S sensor can 
continuously operate at atmospheric pressure, which could enable fast 
and in-situ gas measurement. Further improvement of the detection 
sensitivity can be expected by employing a pair of cavity mirrors with a 
much higher reflectivity and by optimizing the on-beam acoustic reso-
nators in their inner and outer diameters and tube length. Assessing the 
cross-relaxation of H2S with other molecules, such as water vapor, to 
enhance the photoacoustic signal is also worth pursuing. Moreover, the 
availability of cavity mirrors for high cavity finesse and the development 
of locking techniques of a quantum cascade laser can contribute to the 
senor optimization in mid infrared to exploit the much stronger line 
strength. 
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Appendix A. Hydrogen sulfide reference cell 

As shown in  Fig. A1a, the line intensity of H2S strengthens gradually 
from the near-IR to the THz. Compared to THz and mid-infrared, near-IR 

Fig. A1. (a) The line intensity of hydrogen sulfide in near-IR, mid-IR and THz spectral ranges. (b) The absorbance of reference cell in the vicinity of the chosen 
absorption line. 

Fig. A2. Representative reflection signal from the optical resonator. The 
ground and valley voltage of the reflected signal from the optical resonator are 
2.74 V and 0.17 V, respectively. 

H. Zhang et al.                                                                                                                                                                                                                                  



Photoacoustics 29 (2023) 100436

6

laser sources and optics are mature technologies, available on the 
market. Therefore, an appropriate absorption line of H2S in the near 
infrared range, the R(4) transition at 1578.128 nm, is chosen as the 
investigation target. Hence, to perform laser frequency locking to the 
absorption line, the related parameters of the reference chamber need to 
be properly selected. On one hand, the lower the pressure is, the more 
accurate the reference wavelength can be, due to a narrower absorption 
line shape. On the other hand, the stronger the absorbance of the 
reference cell is, the higher the signal to noise ratio of the error signal for 
the laser-molecule locking will be. However, a low pressure may weaken 
the absorbance in the Beer-Lambert regime and Doppler broadening 
limits the absorption linewidth. As a tradeoff between line shape 
broadening and absorbance, a reference chamber (H2S-15-0211914, 
Wavelength Reference; equivalent optical path: 80 cm; pressure: 
10 torr) was customized with 100 % hydrogen sulfide filled. Fig. A1b 
shows its simulated absorbance spectrum in the range of 
6335.2–6338 cm− 1. 

Appendix B. Optical coupling efficiency 

By scanning the wavelength of the ECDL, the reflected beam from the 
optical resonator can be detected by PD2 shown in Fig. 1. The achieved 
optical coupling efficiency is determined to be 93.8 %, based on the 
recorded incident power for the fundamental resonator mode shown in  
Fig. A2. As the acoustic signal scales linearly with laser power, higher 
coupling efficiency will lead to a better sensitivity. 
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