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Abstract: Quartz tuning forks (QTFs) are employed as sensitive elements for gas sensing applications
implementing quartz-enhanced photoacoustic spectroscopy. Therefore, proper design of the QTF
read-out electronics is required to optimize the signal-to-noise ratio (SNR), and in turn, the minimum
detection limit of the gas concentration. In this work, we present a theoretical study of the SNR trend
in a voltage-mode read-out of QTFs, mainly focusing on the effects of (i) the noise contributions of
both the QTF-equivalent resistor and the input bias resistor RL of the preamplifier, (ii) the operating
frequency, and (iii) the bandwidth (BW) of the lock-in amplifier low-pass filter. A MATLAB model
for the main noise contributions was retrieved and then validated by means of SPICE simulations.
When the bandwidth of the lock-in filter is sufficiently narrow (BW = 0.5 Hz), the SNR values do
not strongly depend on both the operating frequency and RL values. On the other hand, when
a wider low-pass filter bandwidth is employed (BW = 5 Hz), a sharp SNR peak close to the QTF
parallel-resonant frequency is found for large values of RL (RL > 2 MΩ), whereas for small values of
RL (RL < 2 MΩ), the SNR exhibits a peak around the QTF series-resonant frequency.

Keywords: quartz-enhanced photoacoustic spectroscopy; quartz tuning fork; voltage-mode read-out;
front-end electronics; signal-to-noise ratio; gas sensing

1. Introduction

Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a well-known technique
used for the detection of specific trace gases in complex mixtures [1–7]. The high per-
formances in terms of selectivity and sensitivity allow for the exploitation of this tech-
nique in a wide range of applications, such as environmental monitoring [8–10], chemical
analysis [11,12], and advanced biomedical diagnostics [13,14]. In QEPAS, acoustic waves
are generated between the prongs of a quartz tuning fork (QTF) by the absorption of
modulated light from the gas molecules, via non-radiative relaxation processes [2,15]. QTFs
are employed as piezoelectric sensitive elements to transduce pressure waves in an electric
signal [2,6]. This technique was firstly introduced in 2002 and exploited standard QTFs
resonating at 32 kHz [16]. These quartz resonators are characterized by a good immunity
to environmental acoustic noise because of their high quality factors (Q) and compact
dimensions. Due to the sharp resonance, external noise sources outside of the resonator’s
small bandwidth (~4 Hz at atmospheric pressure) do not influence the QTF signal [17].

Suitable front-end electronics must be designed to read-out the signal generated by the
QTF. The common read-out architecture employed in QEPAS sensors is the transimpedance
amplifier (TIA) [8–14], schematically depicted in Figure 1.
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means of a classic OPAMP in a non-inverting configuration, as illustrated in Figure 2, and 
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load resistor RL must necessarily be connected to the non-inverting input of the amplifier 

to establish its DC voltage to ground, when the input bias current of the OPAMP can be 

neglected. 

 

Figure 2. Voltage-mode read-out of the QTF (OPAMP in non-inverting configuration). 

The thermal noise of the resistor RL contributes to the overall noise spectral density 

of the circuit output. Furthermore, the QTF experiences the loading effect due to RL; then, 

the input voltage Vqtf of the amplifier results from the product of the current generated by 

the QTF under this load and the value of RL itself. As a consequence, RL has a direct im-

pact on both the level of the useful signal Vout and the noise at the output of the pream-
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Figure 1. QTF read-out by means of a transimpedance preamplifier.

In this configuration, the current generated by the QTF (Iqtf) due to the charge dis-
placement caused by piezoelectric effect when pressure waves put prongs in vibration is
forced to flow entirely in the feedback resistor RF. Due to the virtual ground established on
the inverting node of the operational amplifier (OPAMP), the measurement is insensitive to
the stray capacitance Cst and, in turn, the output voltage (Vout) is proportional to Iqtf.

Recently, it has been demonstrated that a voltage-mode approach for the read-out
electronics of QTFs can be advantageous in terms of signal-to-noise ratio (SNR) [18–21].
In this case, the piezoelectric transducer is coupled to a voltage amplifier, realized by
means of a classic OPAMP in a non-inverting configuration, as illustrated in Figure 2,
and characterized by very high input impedance. Since the QTF is an open circuit at
DC, a load resistor RL must necessarily be connected to the non-inverting input of the
amplifier to establish its DC voltage to ground, when the input bias current of the OPAMP
can be neglected.
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Figure 2. Voltage-mode read-out of the QTF (OPAMP in non-inverting configuration).

The thermal noise of the resistor RL contributes to the overall noise spectral density of
the circuit output. Furthermore, the QTF experiences the loading effect due to RL; then, the
input voltage Vqtf of the amplifier results from the product of the current generated by the
QTF under this load and the value of RL itself. As a consequence, RL has a direct impact on
both the level of the useful signal Vout and the noise at the output of the preamplifier.

QEPAS requires synchronous detection techniques based on lock-in amplifiers (LIAs)
to efficiently extract the useful signal component from the noise floor [2,22–26]. In LIAs,
the amplifier signal is first multiplied with both a sinewave and a 90◦ phase-shifted copy of
that sinewave at a selected operating frequency (fop); then, a low-pass filter (LPF) is used
to retrieve the signal component at fop or its multiples [22,26]. The phase noise in high-Q
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mechanical oscillators, such as QTFs, could be detrimental when LIAs are employed, since
the amplitude of the output signal, and, in turn, the SNR, will be affected [27].

Both QTF signal and noise sources undergo the signal conditioning chain composed
of the front-end voltage amplifier, the multiplication with a sine wave at frequency fop, and
the low-pass filter. Therefore, a study on the SNR as a function of (i) the parameters of the
amplifier components, (ii) the operating frequency, and (iii) the low-pass filter bandwidth
must be carefully conducted to fully exploit the resonance properties of the QTF and
maximize the performances of a QEPAS sensor.

In this work, we reported the effect of the RL value on the frequency where the SNR
exhibits its peak at the output of the lock-in amplifier, i.e., the optimum operating frequency
for the QEPAS system. Starting from the well-known Butterworth–Van Dyke model for
the QTF [17,28–30], we derived an analytical expression for the amplitude of the signal
generated by the QTF as a function of frequency at different RL values. For our purposes,
only the main electronic noise contributions were considered, whereas phase noise was not
taken into account. Furthermore, a mathematical modelling was developed with MATLAB
for all the relevant contributions to the total noise spectral density at the output of the
preamplifier, making possible a comparison among their relative weights. Finally, the
behavior of the SNR as a function of the lock-in demodulation frequency was studied at
different RL values and LPF bandwidths, namely, the acquisition time. All the proposed
analytical expressions were validated by comparing the developed MATLAB model with
SPICE simulations, carried out considering a realistic model for the OPAMP used in the
preamplifier. As a result of the study, general guidelines for the choice of the resistor
RL and the most suitable operating frequency for the QEPAS system implementing the
voltage-mode read-out of QTFs can be derived. Furthermore, the proposed analysis allows
for the study of the noise contributions at different bandwidths to optimize the acquisition
time of QEPAS measurements.

2. Signal Response of a Quartz Tuning Fork Read Out in Voltage Mode

As mentioned above, the Butterworth–Van Dyke circuit and an equivalent Thevenin
source were employed to model the QTF when excited by an acoustic wave [17] to
find an analytical expression of the output signal Vout as a function of frequency for
the circuit in Figure 2. For this investigation, we considered (i) an OPAMP with suffi-
ciently high gain-bandwidth product so that the gain of the non-inverting configuration is
Av = Vout/Vqtf = 1 + RF/RS, as shown in Figure 2; and (ii) the capacitance Cin between the
non-inverting input and ground. Thus, the circuit to be studied is sketched in Figure 3.

Here, the parasitic shunt capacitance Cp between the terminals of the QTF is in parallel
with the input capacitance of the voltage amplifier Cin, so that the total parasitic capacitance
which loads the QTF is Cpt = Cp + Cin. The voltage source Vin represents the internal electric
signal generated by the piezoelectric effect, when the QTF is excited by an acoustic wave.
Straightforward calculations provide the expression of the transfer function Hv(jω) between
the internal voltage Vin(jω) and the output voltage Vout(jω):

Hv(jω) =
Vout(jω)
Vin(jω)

=

= Av
jωCsRL

1−ω2(LCs+RpRLCptCs)+jω[(Rp+RL)Cs+RLCpt−ω2LCptCsRL]
.

(1)

The squared modulus of this transfer function, which describes how the squared
amplitude of the circuit response depends on the frequency, can be written as follows:

|Hv(jω)|2 =
A2

v(
1−ω2

ω2
R

)2

ω2R2
LC2

s
+
(

1 + Cpt
Cs

)2
[(

1− ω2

ω2
P

)
+ RP

RL

Cs
Cpt+Cs

]2
, (2)
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where ωR = 1√
LCs+RpRLCptCs

is the angular frequency in which the transfer function

Hv(jω) exhibits a real value andωP = 1√
L

CsCpt
Cs+Cpt

= 1√
LCeq

is the parallel-resonant angular

frequency of the QTF as loaded in the circuit shown in Figure 3.
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Figure 3. Butterworth–Van Dyke model for the QTF in the voltage-mode read-out circuit.

AC SPICE simulations have been carried out to confirm the validity of the expression
in Equation (2). The set of typical parameters listed in Table 1 has been used for the QTF in
both the analytical model and SPICE simulations. Moreover, in SPICE simulations, Cin is
included in the model of the AD8067, provided by Analog Devices. AD8067 is a low-noise,
high speed, FET input operational amplifier. Thanks to its very low input bias current, it is
suitable for precision and high gain applications [31].

Table 1. Parameter values used to compare the results of expression in Equation (2) to SPICE simulations.

Parameter Value

Cp 5 pF
Cs 5.2424 fF
L 4.5 kH

Rp 92.7 kΩ
Cin 1.5 pF
RF 47 kΩ
RS 1 kΩ

The series-resonant frequency fS of the QTF is:

fS =
ωS

2π
=

1
2π
√

LCs
= 32768 Hz,

whereas its quality factor Q is

Q =
1

ωsRpCs
= 104,
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which are typical values for a standard QTF used in QEPAS sensors [2,16,17,26]. Moreover,
the gain of the non-inverting configuration is Av = 48 and the parallel-resonant frequency of
the QTF is fP =ωP/2π = 32,781 Hz. The value of CP ∼= CP + CS could be found by measuring
the equivalent capacitance of the QTF at low frequencies using the capacitance-voltage
profiling technique. The ratio CS/CP is extracted by the ratio fP/fS after measuring the
parallel and series-resonant frequencies of the QTF, where the sensor exhibits the minimum
and maximum admittance, respectively. Last, L can be found from fS, knowing CS, and
RP is extracted from the quality factor Q of the QTF [21]. Figure 4 shows the comparison
between the results provided by the SPICE simulations and the analytical model for three
different values of RL (100 kΩ, 0.5 MΩ, and 2.5 MΩ).
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Figure 4. Comparison between SPICE simulations and analytical model in Equation (2) of the
frequency response of the circuit in Figure 3 for RL = 100 kΩ, 0.5 MΩ and 2.5 MΩ.

The perfect matching between two modellings demonstrates that Equation (2) can be
used to accurately represent the behavior of the circuit in Figure 3. The maximum difference
between the peak frequencies of corresponding curves is in the order of a few hundredths
of Hz and the mean absolute percentage error between corresponding curves is about 1.8%.

2.1. Peak Frequency of the QTF Signal Response as a Function of RL

As shown in Figure 4, the output signal amplitude and the peak frequency fpeak
strongly depend on the value of the resistor RL. This is particularly relevant for an optimal
choice of the operating frequency in the QEPAS technique, aimed at exploiting as much as
possible the resonance properties of the QTF.

Figure 5 shows the fpeak trend as a function of RL. This curve was retrieved computing
|Hv(jω)|2 for different values of RL and then applying MATLAB “max” function to yield
fpeak values.

For RL values lower than 100 kΩ, fpeak tends to the series-resonant frequency
fS = 32768 Hz; whereas, for values of RL higher than 2 MΩ, fpeak tends to assume the
values of the parallel-resonant frequency fP, in our case equal to 32781 Hz.

The behavior of the peak position as a function of the value of RL can be explained
considering the two terms which compose the denominator of the function |Hv(jω)|2 in
Equation (2), reported here, below, for ease of reading, as Den1 and Den2:

Den1(ω) =

(
1− ω2

ω2
R

)2

ω2R2
LC2

s
, Den2(ω) =

(
1 +

Cpt

Cs

)2
[(

1− ω
2

ω2
P

)
+

RP

RL

Cs

Cpt + Cs

]2

(3)
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The behavior of Den1 and Den2 as a function of frequency is reported in Figure 6a,b
for RL = 100 kΩ and RL = 10 MΩ, respectively.
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Results show that Den1(ω) is strongly dependent on the value of RL. In the investi-
gated frequency range: (i) the maximum value of Den1 varies from 868.3 in Figure 6a to
0.17 in Figure 6b; (ii) the blue curve at 100 kΩ varies more rapidly than the Den1 curve
at 10 MΩ in the frequency range close to the minimum; and (iii) the frequency where the
Den1 minimum occurs decreases by more than 20 Hz, from 32,768 Hz in Figure 6a to
32,746 Hz in Figure 6b. Conversely, the dependence of Den2(ω) on RL is only due to the
term RP

RL

Cs
Cpt+Cs

, which is negligible when RL ≥ 1 MΩ, since Cs << Cpt and RP << RL. Indeed:
(i) the red curve maximum value varies from 30.8 in Figure 6a to 21.5 in Figure 6b; (ii) Den2
value variations in the frequency range close to the minimum value are slightly different at
100 kΩ and at 10 MΩ; and (iii) the difference frequency where the Den2 minimum occurs
is about 13 Hz, from 32,794 Hz in Figure 6a to 32,781 Hz in Figure 6b. As a result, for
RL < 100 kΩ, the contribution of Den1(ω) becomes dominant, so that when RL decreases,
the minimum value of the denominator of |Hv(jω)|2 tends to the zero of Den1(ω) function,
located atω =ωR. Moreover, in this range of RL values,ωR could be approximated toωS:

ωR =
1√

LCs + RpRLCptCs

∼=
1√
LCs

= ωS,

and the peak of |Hv(jω)|2 tends to the series-resonant frequency of the QTF. Instead, for
RL > 2 MΩ, Den1(ω) becomes less relevant and Den2(ω) tends to be dominant in the sum
of the two terms. As a consequence, the minimum of the sum tends to the zero of Den2(ω).
Finally, in this range of RL, this zero is very close toω = ωP, thus, the peak of |Hv(jω)|2 is
almost coincident with the parallel-resonant frequency of the QTF.

2.2. Peak of the QTF Signal Response as a Function of RL

The trend of the peak value of |Hv(jω)|2 as a function of RL value is shown in Figure 7.
The same method applied for Figure 5 was used to obtain this curve.
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The peak value of |Hv(jω)|2 is an increasing function of RL up to a saturation value at
RL > 1 GΩ. As discussed in the previous section, for large values of RL,ωpeak = 2πfpeak is
very close to the parallel-resonant angular frequencyωp and the peak of |Hv(jω)|2 tends
to the following value:

∣∣∣Hv

(
jωpeak

)∣∣∣2 ∼= |Hv(jωP)|
2 ∼= A2

v
ω2

PR2
LC2

s(
1− ω2

P
ω2

R

)2 (4)
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The denominator of Equation (4) can be rewritten as:

1−
ω2

P
ω2

R
= 1−

LCs + RpRLCptCs

LCeq
=

L
(
Ceq −Cs

)
− RpRLCptCs

LCeq
∼= −

RpRLCpt

L

Since CEquation ∼= Cs and RL is very large, it results

∣∣∣Hv

(
jωpeak

)∣∣∣2 ∼= A2
v

1
LCeq

R2
LC2

s

R2
pR2

LC2
pt

L2

∼= A2
v

LCs

R2
pC2

pt
,

which is independent on RL.
However, the performance of the QEPAS technique will depend on the SNR obtained

at the output of the preamplifier, not only on the amplitude of the signal. Therefore, it
is mandatory to carry out a detailed study of the electronic noise contributions that are
involved in the circuit, with the purpose of finding out the optimal operating frequency
maximizing the SNR.

3. Contributions to the Output Noise Spectral Density

The most relevant contributions to the total electronic noise at the output of the
voltage-mode preamplifier are shown in Figure 8.
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Figure 8. Noise contributions in the circuit of Figure 3.

In our calculation, the phase noise was neglected [27] and only the main electronic
noise contributions were considered. Each resistor Ri of the circuit has been associated to
its thermal noise voltage source, en_i

2 = 4kTRi. The OPAMP noise has been characterized
by means of the classic equivalent input noise voltage (en_op) and current (in+ and in−)
sources. To simplify the study without losing accuracy, it is possible to neglect the noise
contributions of RF and RS, composing the feedback network, due to the small values of
these resistors. For the same reasons, the equivalent noise current in− associated to the
inverting input of the OPAMP likewise does not give any relevant contribution. Moreover,
all the sources in Figure 8 can be considered independent, so that the total output noise
power spectral density Sntot(ω) can be evaluated as follows:

Sntot(ω) ∼= Snp(ω) + SnL(ω) + Snop(ω) + Snin+(ω), (5)

where the terms of the right-hand side come from Rp, RL, en_op, and in+, respectively. In
Equation (5), the single terms are the product of the spectral density of each noise source
multiplied by the squared modulus of the transfer function between the noise source and
the output of the circuit, determined using the superposition principle [32].
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Concerning the noise associated to the resistor Rp, the transfer function Snp(ω) be-
tween the source en_p and the output of the preamplifier is Hv(jω), thus:

Snp(ω) = 4kTRp|Hv(jω)|2.

As a consequence, the behavior of Snp(ω) as a function of both the frequency and RL
is the same discussed in Section 2.

Let us now consider the noise contribution from the resistor RL. The transfer function
between the source en_l and the output of the front-end is:

HL(jω) =
Vn_out(jω)

en_l(jω)

= Av
1−ω2LCs+jωRpCs

1−ω2

ω2
R
+ jω[(RL+Rp)Cs+ RLCpt− ω2LCptCsRL]

. (6)

The denominators of Hv(jω) and HL(jω) are the same and the two transfer functions
differ only in their numerator. The contribution of the thermal noise of the resistor RL to
the total output noise spectral density is:

SnL(ω) = 4kTRL|HL(jω)|2. (7)

Figure 9 shows the behavior of SnL as a function of the frequency, for four different
values of RL (100 kΩ, 500 kΩ, 6 MΩ, and 20 MΩ).
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Figure 9. Comparison between SPICE simulations and analytical model described in Equation (7) of
the output noise spectral density contribution from the thermal noise of RL, for four different values
of the resistor: 100 kΩ, 500 kΩ, 6 MΩ, and 20 MΩ.

The curves calculated with Equation (7) and those obtained by SPICE simulation are
in excellent agreement. The function |HL(jω)| has a minimum located atω = ωS, since, at
the series-resonant frequency, the Butterworth–Van Dyke impedance model of the QTF is
reduced to Rp, which is its minimum value. Accordingly, also SnL(ω) exhibits a minimum
at the same frequency. Furthermore, a peak appears around the parallel-resonant frequency
for increasing values of RL. Figure 10 reports the behavior of the peak value of SnL(ω) as a
function of RL, which varies from 500 kΩ to 20 MΩ.
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Figure 10. Peak of the output noise spectral density contribution due to RL as a function of RL itself.

Using the set of parameters listed in Table 1, starting from low values of RL, this
peak appears when RL ∼= 500 kΩ (dashed magenta and green curves in Figure 9), then
increases up to RL ∼= 6 MΩ (Figure 10). Beyond this value, the peak decreases for increas-
ing values of RL and the function SnL(ω) assumes lower values in the frequency range
under investigation.

Figures 7 and 10 suggest that, at least for what concerns the noise contributions con-
sidered up to now, it is convenient to work with large values of the resistor RL because the
amplitude of the output signal increases with RL (see Figure 7) and the noise contribution
due to this resistor decreases (see Figure 10), whereas the contribution from the thermal
noise of Rp has exactly the same frequency behavior of the signal.

Let us now consider the contribution of the input equivalent voltage noise of the
OPAMP to the total output noise:

Snop(ω) = e2
n_op|Hen(jω)|2. (8)

Since the flicker noise has been considered negligible in the narrow bandwidth of
interest, namely, around the QTF resonance frequency, the input equivalent noise voltage
has a constant power spectral density, i.e., it can be considered as white noise. The value of
en_op has been set at 6.6 nV/

√
Hz, as reported in the data sheet of the AD8067 [31]. The

transfer function Hen(jω) is the following:

Hen(jω) =
Vn_out(jω)
en_op(jω)

= Av
1−ω2(LCs+RpRLCpCs)+jω[(Rp+RL)Cs+RLCp−ω2LCpCsRL]

1−ω2(LCs+RpRLCptCs)+ jω[(Rp+RL)Cs+ RLCpt− ω2LCptCsRL]
,

(9)

in which the numerator differs from the denominator only for the capacitance Cpt = Cp + Cin
replaced by Cp. This contribution can be considered as constant in the frequency range
investigated for QEPAS applications.

The contribution of the input equivalent current noise in+ to the overall output noise
spectral density Sntot(ω) is

Snin+(ω) = i2n+(ω)R2
L|HL(jω)|2. (10)

Using Equations (10) and (7), the contributions to Sntot(ω), respectively due to in+ and
RL, can be compared:

Snin+(ω)

SnL(ω)
=

i2n+(ω)RL

4kT
.
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The contribution of Sin+(ω) can be neglected with respect to SnL(ω) if

i2n+(ω)� 4kT
RL

.

If we consider a large RL value, i.e., 100 MΩ, Sin+(ω) will be negligible at room temper-
ature if in+ << 13 fA/

√
Hz. Since the AD8067 has FET inputs, in+(ω) cannot be considered

white, but is a linear function of the frequency, in the range where the flicker noise can
be neglected [33]. In our model, the value of in+(ω) at 10 kHz has been set to 1 fA/

√
Hz,

a slightly higher value than the one reported in the datasheet of the OPAMP, which is
0.6 fA/

√
Hz [31], and the slope of the linear function has been set to +20 dB/dec [33].

Figure 11 shows the excellent correspondence between the analytical model used for in+(ω)
and the input equivalent noise current resulting from a simulation carried out with the
SPICE model of the AD8067.
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Figure 11. Fitting between the analytical model and SPICE simulations of the input equivalent noise
current of the AD8067.

It is worth noticing that around the resonance frequencies of the QTF, the level of in+(ω)
remains lower than the limit of 13 fA/

√
Hz determined above. Thus, we can conclude that

the contribution Sin+(ω) can be neglected with respect to SnL(ω) in the noise analysis of our
circuit without losing accuracy.

The analysis carried out so far allows for a comparison of the terms in Equation (5) to
understand which ones are dominant for the output noise spectral density of the preampli-
fier. Figure 12 compares the spectral contributions of the OPAMP and the resistors Rp and
RL to the overall Sntot(ω) at the output of the circuit. The terms due to en_op and in+, namely,
Snop(ω) and Snin+(ω), respectively, have been summed, resulting in the overall noise contri-
bution of the OPAMP (Sopamp(ω)) and allowing for a comparison of the analytical model
with the results of SPICE simulations, in which the two terms are not distinguishable. The
same RL values of Figure 9 have been considered (100 kΩ, 500 kΩ, 6 MΩ, and 20 MΩ).

For all the considered cases, the results provided by the analytical model and the SPICE
simulations exhibit a very good agreement. In addition, the contribution of the OPAMP to
the total output noise is always negligible compared to the sum of the contributions from
RL and Rp. SnL(ω) tends to prevail over Snp(ω) for RL < 6 MΩ (Figure 12a,b), whereas the
opposite happens when the value of RL is larger than 6 MΩ (Figure 12c,d). This confirms
the previous conclusion about the advantage of working with large values of the resistor
RL in order to achieve good performance in terms of SNR.
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4. Signal-to-Noise Ratio at the Output of the Lock-in Amplifier

Synchronous detection techniques based on laser modulation and lock-in amplifier are
always used in QEPAS sensors to increase the SNR of the measurements. In the previous
sections, the amplitude of the useful signal and the noise spectral density at the output of
the voltage-mode preamplifier are expressed as a function of frequency. These expressions
can be conveniently exploited to evaluate the SNR at the output of the LIA. Thanks to
synchronous demodulation and narrow-band low-pass filtering, the LIA output signal
is DC-level proportional to the amplitude of the preamplifier response at the operating
frequency. When the preamplifier response is acquired at the QTF resonance frequency, the
trend of the SNR can be investigated in a small range around fs. Thus, if the preamplifier
response is acquired at a certain frequency fop close to fs, the output signal is proportional
to |Hv(fop)|. For what concerns noise, as a result of demodulation, the LIA transfers
around DC the noise spectrum at the output of the preamplifier, centered around the
LIA reference frequency. This noise is then filtered by means of the LIA narrow low-pass
filter. Thus, the LIA behaves in practice like a narrow band-pass filter centered around
its reference frequency. Hence, LIA was modelled as a biquadratic band-pass filter with
a transfer function:

HLIA(jω) =
jωop

Qfilt
ω

ω2
op −ω2 + jωop

Qfilt
ω

, (11)

characterized by unity gain at center frequency and −3dB bandwidth BW =ωop/Qfilt [34].
Therefore, we can describe the behavior of the SNR at the output of the LIA as a func-

tion of the chosen operating frequency fop = ωop/2π by means of the
following function:

SNRn
(
ωop

)
=

|Hv(ωop)|√∫ ∞
−∞ Sntot(ω)|HLIA(jω)|2dω

=

∼= |Hv(ωop)|√∫ ∞
−∞ Snp(ω)|HLIA(jω)|2df+

∫ ∞
−∞ SnL(ω)|HLIA(jω)|2dω

(12)

where the amplitude of the input signal Vin (see Figure 3) has been normalized to 1 V.
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By separating the noise contributions from Rp and RL, we can define two functions:

SNR2
np
(
ωop

)
=

∣∣Hv
(
ωop

)∣∣2∫ ∞
−∞ Snp(ω)|HLIA(jω)|2dω

and

SNR2
nL
(
ωop

)
=

∣∣Hv
(
ωop

)∣∣2∫ ∞
−∞ SnL(ω)|HLIA(jω)|2dω

Thus, the total normalized squared-SNR can be rewritten as follows:

SNR2
n =

1
1

SNR2
np

+ 1
SNR2

nL

. (13)

First, let us consider a very narrow-bandwidth BW = 0.5 Hz, corresponding to a
settling time of about 1.3 s for an equivalent first-order LIA low-pass filter. In this case,
the behavior of the integrated noise as a function of fop is expected to be very similar to
the output noise spectral density. Thus, the SNRnp contribution is expected to be almost
spectrally flat since the noise from RP and the signal have the same transfer function Hv(f).
Nonetheless, considering a representative value for RL = 100 kΩ, a peak of SNRnp emerges
around the peak frequency of |Hv(f)|, because of the effect of integration, as reported
in Figure 13. As shown in Figure 13, for a bandpass filter, the effect of the integration
bandwidth on the input noise spectral density can be more intuitively represented by
means of a simple brick-wall filter.
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Figure 13. Integration of the contribution Snp (red line), due to RP, to the total output spectral noise
density at a low-pass filter bandwidth of 0.5 Hz around the operating frequency fop, for fop = fpeak

and fop 6= fpeak (RL = 100 kΩ).

Indeed, in the narrow integration bandwidth, the function Snp(f) takes monotonically
decreasing values on both sides of fop = fpeak; whereas, for any other frequency value, Snp(f)
has decreasing values in one direction, but increasing values in the other, as illustrated in
Figure 13. As a consequence, the value of the integrated noise normalized to the value
of the signal reaches a minimum value at fop = fpeak, generating a peak value in the
function SNRnp(fop).

The presence of a peak value for SNRnp is also visible in Figure 14, which reports
SNRnp as a function of the frequency fop, for different values of RL. Moreover, for increasing
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values of RL, the peak moves from fS to fP; for large values of RL, it becomes slightly more
pronounced, even though the overall behavior always remains rather flat.
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Figure 14. RP noise contribution to the SNRn at the LIA output as a function of the operating
frequency, for different values of RL and at a low-pass filter bandwidth of BW = 0.5 Hz.

As for the term SNRnL, its behavior as a function of fop is strongly affected by the
minimum of the noise spectral density SnL at fS. This effect prevails over the peak value
of the signal, which moves towards fP for increasing values of RL, resulting in a local
maximum point on SNRnL which is always located at the series-resonant frequency fS for
any value of RL. Figure 15 shows the behavior of SNRnL as a function of the operating
frequency for different RL values.
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Figure 15. RL noise contribution to the SNRn at the LIA output as a function of the operating
frequency, for different values of RL and at a low-pass filter bandwidth of BW = 0.5 Hz.

Higher values of SNRnL are obtained for increasing values of RL values. Therefore, as
reported in Equation (13), SNRnp becomes dominant in the calculation of the overall SNR
for large values of RL.

We can now consider the overall SNR at the LIA output given by Equation (13) as
a function of fop. Figure 16 reports the SNRn as a function of fop for different values
of RL with BW = 0.5 Hz. Here, a comparison between the results given by the analyt-
ical model and the corresponding SPICE simulation is also proposed, highlighting an
excellent correspondence.
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Figure 16. Total normalized signal-to-noise ratio SNRn at the LIA output as a function of the
operating frequency, for different values of RL and at a low-pass filter bandwidth of BW = 0.5 Hz.
The corresponding results of SPICE simulations are also reported.

For low values of RL, SNRnp is almost flat (see Figure 14) and the peak of the total
SNRn coincides with the peak of SNRnL, so the best operating frequency for QEPAS is
the series-resonant frequency fS of the QTF. When RL is increased, as already pointed out,
the contribution of SNRnL becomes less relevant, so a local peak in the SNRn emerges,
corresponding to the peak of SNRnp, which occurs at the parallel-resonant frequency fP.

From Figure 16, it is evident that the SNRn peak feature at fS becomes less sharp as
RL increases. For RL = 100 MΩ, the SNRn becomes quite flat around fS and a sharp peak
appears at fP. In general, slightly better results in terms of SNR are obtained with large
values of RL.

The study above has been carried out for a LIA with a very narrow-band filter, which
is useful when the requirements in terms of noise rejection are very harsh and the long time
needed for a single measurement can be tolerated. With fast measurements [35,36], the
bandwidth of the LIA filter must necessarily be increased, and the results of the previous
analysis must be revised. Moreover, the QTF response time represents a further issue to
deal with when fast measurements are needed. The response time is given by:

τ =
Q
πfs
∼= 100 ms.

This implies that, in conventional QEPAS applications, a long integration time
(300 to 400 ms) is required to acquire the LIA output signal. Nevertheless, specific QEPAS
techniques such as Beat Frequency (BF) QEPAS exploit the fast transient response of an
acoustically excited QTF to retrieve the gas concentration, the resonance frequency, and the
quality factor of the QTF [7]. This approach overcomes the limitations imposed by the time
response of the QTF, allowing shorter acquisition times and faster measurements.

As concerns the contribution to the total SNR at the LIA output due to the resistor
Rp, since the integration bandwidth is larger, the effect of the integration around fpeak,
described above (see Figure 13), is more relevant. Consequently, the peak of SNRnp as a
function of the operating frequency, always placed at fpeak, becomes sharper and more
pronounced. Figure 17 shows the behavior of SNRnp as a function of fop when BW = 5 Hz,
corresponding to a settling time of about 130 ms for an equivalent first order LIA low-pass
filter for the same values of RL considered in Figure 14.
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Figure 17. RP noise contribution to the SNRn at the LIA output as a function of the operating
frequency, for different values of RL and at a low-pass filter bandwidth of BW = 5 Hz.

We now analyze the RL noise contribution to the SNR for increasing values of the LIA
bandwidth. The effect of the minimum of SnL, placed at fS, tends to be less relevant, because
of the increase of the integration bandwidth. Therefore, the function SNRnL becomes flatter
around the series-resonant frequency. Nonetheless, for small values of RL, the peak of the
signal is located at fS and, consequently, the peak of SNRnL is still placed at fS. When RL
is increased, the peak of the signal moves towards the parallel-resonant frequency fP and
the effect of the minimum of SnL becomes less relevant, so SNRnL tends to be flat. For
large values of RL, SnL values decrease (see Figure 12c,d), whereas the peak of the signal
placed at fP increases; as a result, SNRnL exhibits a peak at fP, which becomes sharper as RL
increases. The behavior of SNRnL as a function of the operating frequency fop is shown in
Figure 18 for BW = 5 Hz.
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Figure 18. RL noise contribution to the SNRn at the LIA output as a function of the operating
frequency, for different values of RL and at a low-pass filter bandwidth of BW = 5 Hz.

Finally, from Equation (13), Figure 19 shows that the peak value of SNRn results at fS,
where the peak of both SNRnp and SNRnL is located, for low values of RL.
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Figure 19. Total normalized signal-to-noise ratio SNRn at the LIA output as a function of the
operating frequency, for different values of RL and at a low-pass filter bandwidth of BW = 5 Hz. The
corresponding results of SPICE simulations are also reported.

For increasing values of RL, the SNRn peak feature starts to flatten out until, for values
of RL larger than about 2 MΩ, a peak emerges close to fP, where both SNRnp and SNRnL
have their maximum value. This peak becomes as sharper as RL increases, as shown
in Figure 19, which represents the behavior of SNR as a function of fop for BW = 5 Hz.
Additionally in this case, SPICE simulations are in very good agreement with the results
provided by the analytical model. The SNRn peak at 100 MΩ is more than two times higher
than the values close to fs.

Finally, the presented study can be applied to compute the Normalized Noise Equiva-
lent Absorption (NNEA), an important parameter to compare QEPAS sensors [2,4,5,7,10].
NNEA is defined as follows:

NNEA =
P·α

SNR·
√

∆f

where P is the laser optical power, α is the absorption coefficient of the gas under investiga-
tion, SNR is the signal-to-noise ratio, and ∆f is the integration bandwidth.

In [10], an NNEA of 5.0 × 10−9 W·cm−1/
√

Hz for the detection of CO2 in an N2
mixture, employing a transimpedance amplifier with a 10-MΩ feedback resistor and a
narrow-bandwidth LIA filter, was demonstrated. Assuming the same value of NNEA
for a voltage preamplifier with a 10-MΩ bias resistor and an integration bandwidth of
0.5 Hz, a 100-MΩ bias resistor and the same integration bandwidth would lead to an
NNEA of 4.4 × 10−9 W·cm−1/

√
Hz, thus an improvement of a factor of 1.1, as suggested

from Figure 16.
Considering a 5 Hz LIA filter bandwidth, an NNEA of 5.8 × 10−9 W·cm−1/

√
Hz can

be calculated for a bias resistor of 10 MΩ. An improvement of a 1.4 factor can be calculated
when a bias resistor of 100 MΩ is employed, leading to a NNEA of 4.1 × 10−9 W·cm−1/

√
Hz.

Table 2 summarizes the NNEA values obtained for different values of RL and ∆f: it can be
observed that increasing RL at a fixed filter bandwidth always results in an improvement
of the NNEA.

Table 2. NNEA for different values of RL and ∆f, calculated starting from the value reported in [10]
for the detection of CO2 in an N2 mixture.

RL [MΩ] ∆f [Hz] NNEA [W·cm−1/
√

Hz]

10 0.5 5.0 × 10−9 [10]
100 0.5 4.4 × 10−9

10 5 5.8 × 10−9

100 5 4.1 × 10−9
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5. Discussion and Conclusions

In this work, we investigated the SNR trend as a function of the operating frequency
for a voltage-mode read-out of QTFs, comparing the results obtained by the developed
model with SPICE simulations. The effects of the RL values, the operating frequency,
and the bandwidth of the LIA low-pass filter on the overall SNR were investigated. We
firstly demonstrated that the contribution of the OPAMP to the output noise of the voltage
preamplifier can be always neglected and the output noise power density is dominated
by the contributions of the QTF-equivalent resistor Rp and RL. Moreover, the dominant
contribution to the total noise changes from RL, when RL < 10 MΩ, to Rp, for RL > 10 MΩ.

According to our model, the peak value of the SNR tends to increase along with the
bias resistor RL.

When a narrowband low-pass filter of the LIA is employed (e.g., bandwidth of
0.5 Hz), the curves shown in Figure 16 suggest that only a limited increase of the SNR
can be obtained by either increasing the value of the resistor RL or varying the operating
frequency. For RL < 10 MΩ, the best operating frequency for the QEPAS technique is the
series-resonant frequency of the QTF fS, where SNR function exhibits a peak value. This
peak becomes less pronounced when RL is increased. A 10-MΩ bias resistor ensures a
1.3 times higher SNR at the series-resonant frequency fS, with respect to a 100 kΩ-bias
resistor. For large values of RL, SNR tends to be flat around fS and a small peak emerges at
the parallel-resonant frequency fP. For instance, increasing the value of RL up to 100 MΩ
leads to a further increase of the SNR peak by a factor of 1.4. Thus, for these large values of
RL, the choice of the optimal operating frequency for QEPAS is not very critical, in case of a
narrow-band LIA filter.

When a wider LPF bandwidth of the LIA is employed (e.g., bandwidth of 5 Hz), the
SNR peak as a function of the operating frequency is still placed at fS for small values of RL,
as in the case of narrow-band filter (see Figure 19). For large values of RL, the SNR peak at
fP tends to be sharper as compared to the case of narrow-band LIA filter, thus the operating
frequency for the QEPAS technique must be chosen as close as possible to fP to maximize
SNR. As an example, for RL = 100 MΩ, the SNR peak is 1.4 times higher with respect to
RL =10 MΩ.

In addition, the parallel-resonant frequency fP of the QTF depends on the input ca-
pacitance of the OPAMP, so it is not an intrinsic property of the sensitive element. Thus,
suitable techniques must be used to measure fP in presence of Cin to exploit large values of
RL, increase SNR, and optimize the performance of the QEPAS sensor, especially when short
acquisition times are needed. Instead, for long acquisition times, large values of RL are not
very effective for the increase of the overall SNR, and an accurate setting of the operating
frequency close to fs is not critical because of the flatness of SNR as a function of fop. Of
course, the value of RL cannot be made too large, since the input bias current of the OPAMP
would cause unacceptable input offset levels. All the results obtained with the previous
analysis have been confirmed by AC and noise SPICE simulations of the voltage preamplifier
followed by a band-pass filter with center frequency fop and variable bandwidth.

Since, in QEPAS applications, several QTFs have been employed [1–14], the same
study has also been carried out for a representative QTF characterized by an fS = 12.484 kHz
and a quality factor of 104 [9], and the same results were found.

The reported voltage amplifier, implementing the AD8067, will be employed to vali-
date the results obtained both with our model and with the SPICE simulation.
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