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Gas spectroscopy – Editorial special issue photoacoustics 

Photoacoustic spectroscopy is one of the most powerful techniques 
for gas sensing that covers a broad range of applications, including at-
mospheric monitoring, industrial process control, security and 
biomedical applications. Based on the photoacoustic effect, the detec-
tion of acoustic waves generated from gases exposed to light allows a 
precise measurement of gas concentration. From the visible to the ter-
ahertz spectral range, photoacoustic spectroscopy can be employed with 
all kinds of light sources. Several different detection methods to pick up 
photoacoustic waves have been implemented over the years, among 
them: quartz tuning forks, membrane microphones in the resonant cell, 
and cantilever and bridge acoustic sensors for miniaturized detectors. 
Specific sensor designs have been proposed to enhance performance, for 
example, the use of optical resonance cavities to enhance the light-gas 
interaction. This Special Issue plans to review a collection of high- 
quality research articles focused on new developments in photo-
acoustic sensors for applications as well as novel technologies, with a 
focus on the study of the fundamentals and methodology of photo-
acoustic detection. 

In terms of applications, the focus on photoacoustic gas sensing is 
mostly aimed at applications in environmental monitoring. This Special 
Issue illustrated this direction with several papers like “Humidity 
enhanced N2O photoacoustic sensor with a 4.53 µm quantum cascade laser 
and Kalman filter” by Yuan Cao and coauthors [1]. In this manuscript, it 
was demonstrated the realization of a high-sensitivity N2O photo-
acoustic sensor using a 4.53 µm quantum cascade laser with a minimum 
detection limit of 28 ppbv in 1 s and a measurement precision of 34 ppbv 
by implementing a Kalman adaptive filtering to remove the shot-to-shot 
variability related to the real-time noise. In “Compact and portable 
quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide 
environmental monitoring in urban areas” by Fabrizio Sgobba and co-
authors [2] a 19-inch rack-mounted 3-unit sized Quartz Enhanced 
Photoacoustic Spectroscopy (QEPAS) trace gas sensor has been designed 
and realized for real-time carbon monoxide monitoring in ambient air, 
and the sensor was tested outdoors in a trafficked urban area for several 
hours. In “Compact quartz-enhanced photoacoustic sensor for ppb-level 
ambient NO2 detection by use of a high-power laser diode and a tuning 
fork” by Shangzhi Li and coauthors [3] a compact quartz-enhanced 
photoacoustic sensor for ppb-level ambient NO2 detection was demon-
strated. By implementing a high-power blue laser diode module with a 
small divergence angle and a custom grooved quartz tuning fork with 
800-μm prong spacing a minimum detectable concentration (1σ) of 7.3 
ppb with an averaging time of 1 s has been achieved and continuous 
measurements covering a five-day period have been performed to 
demonstrate the stability and robustness of the reported NO2 sensor 
system. In “Integrated near-infrared QEPAS sensor based on a 28 kHz 

quartz tuning fork for online monitoring of CO2 in the greenhouse” by Yihua 
Liu and coauthors [4] a highly sensitive and integrated near-infrared 
CO2 sensor was developed based on quartz-enhanced photoacoustic 
spectroscopy. The QTF, acoustic micro resonator, gas cell, and laser fiber 
are integrated, resulting in a super compact acoustic detection module. 
At atmospheric pressure, a 5.4 ppm detection limit at a CO2 absorption 
line of 4991.25 cm− 1 was achieved with an integration time of 1 s. This 
portable CO2 sensor system was tested for 24 h continuous monitoring of 
CO2 in the greenhouse located in Guangzhou city. Finally, in Mid--
infrared intracavity quartz-enhanced photoacoustic spectroscopy with pptv – 
Level sensitivity using a T-shaped custom tuning fork by Jakob Hayden and 
coauthors [5] the sensitivity of quartz-enhanced photoacoustic spec-
troscopy has been boosted by implementing a resonant optical power 
buildup inside a high-finesse cavity, reaching an optical power ampli-
fication of ~100 and detection limits of 260 ppt and 750 ppt for CO and 
N2O, respectively. 

Photoacoustic gas sensing biomedical applications have also been 
demonstrated in “Quartz-enhanced photoacoustic NH3 sensor that exploi-
ted a large-prong-spacing quartz tuning fork and an optical fiber amplifier for 
biomedical applications” by Zhijin Shang and coworkers [6]. They 
demonstrated a sensor system for exhaled ammonia (NH3) monitoring 
exploiting quartz-enhanced photoacoustic spectroscopy (QEPAS). A 
NH3 minimum detectable concentration of 14 ppb at 1 s averaging time 
was achieved, and continuous measurements of the NH3 level exhaled 
by healthy volunteers were carried out to demonstrate the potentiality of 
the developed sensor for breath analysis applications. In “Photoacoustic 
heterodyne breath sensor for real-time measurement of human exhaled car-
bon monoxide,” Biao Li and coworkers [7] reported on a breath sensor for 
real-time measurement of human exhaled carbon monoxide by 
combining the conventional PAS with a beat-frequency detection algo-
rithm. A detection sensitivity of 26 ppb was achieved with an integration 
time of 1 ms. Test results from the eight volunteers confirm that the 
exhaled CO concentration levels of the smokers were significantly 
higher than those of the nonsmokers. 

This Special Issue also contains papers associated with a novel QTF- 
based sensitive trace gas detection technique called light-induced ther-
moelastic spectroscopy (LITES). In “Ultra-highly sensitive HCl-LITES 
sensor based on a low-frequency quartz tuning fork and a fiber-coupled 
multi-pass cell”, Shunda Qiao and coauthors [8] demonstrated an 
ultra-highly sensitive LITES-based hydrogen chloride (HCl) sensor with 
a minimum detection limit (MDL) of 148 ppb at an integration time of 
200 ms. In “Quartz tuning forks resonance frequency matching for laser 
spectroscopy sensing”, Yufei Ma and coworkers [9] reported on the per-
formance of quartz tuning fork (QTF) based laser spectroscopy sensing 
architecture employing two sensing modules, one based on 
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quartz-enhanced photoacoustic spectroscopy (QEPAS) and one on 
light-induced thermoelastic spectroscopy (LITES) technique. In “Highly 
sensitive HF detection based on absorption enhanced light-induced thermo-
elastic spectroscopy with a quartz tuning fork of receive and shallow neural 
network fitting”, Xiaonan Liu and coworkers [10] reported on a highly 
sensitive hydrogen fluoride (HF) sensor based on LITES technique. A 
Herriott multi-pass cell (MPC) with an optical length of 10.1 m was 
selected to enhance the laser absorption. At an integration time of 110 s, 
the minimum detection limit (MDL) achieved was 71 ppb. Finally, in 
“Quartz tuning fork-based demodulation of an acoustic signal induced by 
photo-thermo-elastic energy conversion”, Ziting Lang and co-workers re-
ported on a gas sensing method based on LITES, also reported as 
quartz-enhanced photothermal spectroscopy (QEPTS), demodulated by 
a quartz tuning fork (QTF) [11]. The method proposed in this paper 
utilizes the second QTF to sense the acoustic wave produced by the first 
QTF owing to the vibration resulting from the photo-thermo-elastic ef-
fect. The measured results indicate that this technique had an enhanced 
signal-to-noise ratio (SNR) of 1.36 times when compared to the tradi-
tional LITES. 

In conclusion, the papers in this Special Issue cover a diverse range of 
photoacoustic gas sensing applications. We hope that these works will 
also be interesting to the readers in the research communities. 
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