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A B S T R A C T   

In this work, a comparison between Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) and Beat Frequency- 
QEPAS (BF-QEPAS) techniques for environmental monitoring of pollutants is reported. A spectrophone 
composed of a T-shaped Quartz Tuning Fork (QTF) coupled with resonator tubes was employed as a detection 
module. An interband cascade laser has been used as an exciting source, allowing the targeting of two NO ab-
sorption features, located at 1900.07 cm− 1 and 1900.52 cm− 1, and a water vapor absorption feature, located at 
1901.76 cm− 1. Minimum detection limits of 90 ppb and 180 ppb were achieved with QEPAS and BF-QEPAS 
techniques, respectively, for NO detection. The capability to detect multiple components in the same gas 
mixture using BF-QEPAS was also demonstrated.   

1. Introduction 

Environmental monitoring of pollutants in the gas phase is critical to 
safeguard public health, and thus several highly sensitive sensing solu-
tions have been proposed and realized [1–3]. The potentiality to acquire 
data in wide and harsh environments and to guarantee the safety of the 
operator promotes Unmanned Aerial Vehicle (UAV)-assisted monitoring 
as one of the most suitable solutions to trace pollution sources in urban 
and industrial areas [4]. One of the main requirements concerns data 
acquisition, which should be reliable and fast at the same time since 
UAVs are battery-powered and transport heavy payloads. For this 
reason, UAV-assisted systems require low power consumption, fast 
response, and compact sensors, capable to validate and transfer data to a 
ground control station during the operation time. Despite electro-
chemical and metal-oxide gas sensors have been widely used [5,6], there 
is a rising interest in the implementation of optical sensors for 
UAV-assisted monitoring, because of their higher sensitivity and selec-
tivity, also allowing accurate detection of multiple gases in the same 
mixture [7–9]. Among the different optical techniques [10–22], 

quartz-enhanced photoacoustic spectroscopy (QEPAS) demonstrated to 
be suitable and reliable to monitor multiple gas traces in the environ-
ment [9,23]. In QEPAS, quartz tuning forks (QTFs) are employed as the 
detector for sound waves produced by gas molecules when modulated 
light is absorbed. The direct piezoelectric effect in quartz allows the 
conversion of the pressure waves into an electric signal. The spec-
trophone typically employed in QEPAS experiments is composed of a 
QTF acoustically coupled with a pair of millimetric resonator tubes that 
amplify acoustic wave intensity between the QTF prongs [24]. Starting 
from 2002 when the QEPAS technique was first reported [25], several 
QTF geometries were proposed to improve sensors performances, by 
optimizing prong spacing, fundamental resonance frequency (f0), and 
quality factor (Q) of the QTF [24]. Both f0 and Q determine the acoustic 
resonator accumulation time defined as τ = Q/(πf0) [26]. The spec-
trophone implementing a T-shaped QTF, with a prong spacing of 0.8 
mm, a fundamental resonance frequency of 12.4 kHz, a quality factor Q 
> 12,000 at atmospheric pressure, and, in turn, an accumulation time of 
~ 0.3 s, has been employed in several sensors for in situ pollutants 
monitoring applications [27–30]. Typically, the photoacoustic signal of 
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the gas under investigation is acquired during a slow spectral scan of the 
laser tuning range across the gas absorption feature, and both the laser 
modulation and the signal demodulation are carried out at the QTF 
resonance frequencies or at one of its harmonics. This process could 
require several minutes and could prevent the real-time monitoring of 
the QTF resonance parameters, necessary to validate measurements. In 
2017, Wu et al. [26] proposed a novel approach, named beat-frequency 
quartz-enhanced photoacoustic spectroscopy (BF-QEPAS), as an alter-
native to the QEPAS technique to simultaneously speed up and validate 
data acquisitions. In BF-QEPAS, the laser modulation frequency (f) is 
detuned of Δf with respect to the QTF fundamental resonance frequency, 
and a fast ramp is applied to scan the laser tuning range so that the QTF 
results excited by an acoustic pulse. As a response, the QTF will relax the 
accumulated energy with damped oscillations at its natural frequency f0, 
with decreasing amplitudes following phenomenologically the expo-
nential law e-t/τ [26]. Since the response is demodulated at the laser 
modulation frequency f, the acquired signal will oscillate at the beat 
frequency Δf = |f − f0| in the Hertz range or lower. The BF-QEPAS signal 
has already been demonstrated to linearly depend on the gas concen-
tration; in addition, for each excitation pulse, the QTF resonance fre-
quency and the quality factor can be simultaneously retrieved by the 
analysis of the damped oscillations of the QTF signal in the time domain 
[26,31]. 

In this work, a comparison between QEPAS and BF-QEPAS tech-
niques using a T-shaped QTF for nitric oxide (NO) detection was re-
ported by employing an apparatus designed for implementing both 
techniques. An interband cascade laser (ICL), with a central wavelength 
of 5.263 µm, allowing both NO and H2O absorption features to be tar-
geted, was selected as the laser source. NO in the environment is mainly 
produced by vehicles and industries as a combustion waste of molecular 
nitrogen in the air at high temperatures [32–34]. The development of 
sensors for NO concentration monitoring is fundamental to control its 
presence in the atmosphere, since NO is both an acid rain precursor that 
contributes to the depletion of ozone in the stratosphere and a precursor 
of the greenhouse gas nitrous oxide. NO sensors found applications also 
in the biomedical field since NO is related to the outbreak of respiratory 
diseases [35–38]. 

2. Experimental setup 

A schematic of the experimental apparatus employed for comparing 
the QEPAS and BF-QEPAS techniques is shown in Fig. 1. 

The acoustic detection module (Thorlabs, mod. ADM01) consisted of 
a spectrophone enclosed in a compact vacuum-tight gas cell equipped 
with two windows and inlet/outlet gas connectors. The spectrophone 
was composed of a T-shaped QTF, resonant at a fundamental frequency 
of 12.4 kHz, on-beam coupled with acoustic resonator (AR) tubes [39]. 
A trans-impedance amplifier with a 10 MΩ feedback resistor was 
employed to transduce the QTF piezoelectric current into a voltage 
signal. The laser source was an ICL (Nanoplus, mod. 3468/04-28), 
emitting at a central wavelength of 5.263 µm and with a maximum 
optical power of 4.68 mW. At a fixed temperature of 14 ◦C, two NO 
absorption features, located at 1900.07 cm− 1 and 1900.52 cm− 1 with 
linestrengths of 2.32⋅10− 20 cm/molecule and 1.24⋅10− 20 cm/molecule, 
respectively, and a water vapor absorption feature, located at 
1901.76 cm− 1 with linestrength of 3.13⋅10− 22 cm/molecule can be 
targeted within the current dynamic range of the ICL [40]. The laser 
beam was focused by a convex lens with a focal length of 50 mm be-
tween the QTF prongs and through the AR tubes. A power meter was 
used to control the laser alignment. Laser-injected current and temper-
ature were controlled by a Thorlabs LDC202C current driver and a 
Thorlabs TED200C temperature controller, respectively. A function 
generator (Keysight EDU33212A) was employed to generate the mod-
ulation signals for the QEPAS and BF-QEPAS configurations. The TTL 
signal from the function generator was sent to the lock-in amplifier 
(Synktek, SIGNAL RECOVERY 7625) as a reference signal. The lock-in 
signal was acquired by a data acquisition card (National Instruments, 
PCIe-6363) and then transmitted to a personal computer. For all mea-
surements, the signal integration time was set as three times the lock-in 
time constant. Two gas cylinders, one with a certified concentration of 
500 ppm of NO in N2 and one with standard air (20 % O2, 1 % H2O and 
79 % N2), and a gas blender (MCQ instruments, GB100 Series) were used 
for the generation of different gas mixtures and the calibration of the 
sensor. A pressure controller (Alicat, EPC-15PSIA-P01), a flow meter 
(Axetris, MFM 2220-BA-U0), a needle valve, and a vacuum pump were 
employed to stabilize the pressure and flow rate conditions during the 
experiment. The flow rate during the experiments was fixed at 50 sccm, 

Fig. 1. Schematic of the experimental setup. ICL: interband cascade laser; AR: acoustic resonator; QTF: quartz tuning fork; TA: trans-impedance amplifier; FG: 
function generator; DAQ: data acquisition card; PC: personal computer, PM: power meter. Red: waveform employed in BF-QEPAS. Blue: waveform employed in 
standard QEPAS. 
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while the pressure was varied to optimize the performances for both 
sensing techniques. 

2.1. QEPAS technique 

A sinusoidal dither for the wavelength modulation was applied to the 
laser current driver together with a slow triangle ramp to scan across the 
current dynamic range of the ICL. The 2f-wavelength modulation (2f- 
WM) technique was employed: a sinewave at half of the QTF resonance 
frequency (f0/2) was provided to the current driver, and the f0-compo-
nent of the QTF signal was extracted with the lock-in amplifier. In this 
way, the 2f-signal is not influenced by any background absorption and 
its maximum value occurs at the peak of the gas absorption feature. 
Thus, the gas concentration can be directly measured by analyzing the 
2f-WM QEPAS peak signal [41]. 

2.2. BF-QEPAS technique 

Together with the sinusoidal modulation, a staircase ramp signal was 
employed for the scanning of the laser current. This signal is composed 
of a steep rising edge, determining the scan rate of the selected ab-
sorption feature in the form of a fast acoustic pulse, followed by a sta-
tionary level during which the damped oscillations of the QTF signal can 
be acquired. In BF-QEPAS, the 1f-wavelength modulation (1f-WM) 
technique was employed [26]: a sinewave at a frequency f was provided 
to the current driver, and the QTF signal component at the same fre-
quency was demodulated by the lock-in amplifier. Since the BF-QEPAS 
sensing performance strongly depends on the modulation frequency, 
the sinewave frequency f was varied to optimize the minimum detection 
limit (MDL) of the BF-QEPAS sensor. 

3. Results and discussion 

The BF-QEPAS signal dependence on both the scan rate of the 
staircase ramp and the lock-in amplifier time constant needs to be 
investigated to optimize the sensing performance [26]. At the same 
time, the modulation frequency and amplitude of the sinewave must be 
optimized for both techniques. The dependence from the above-
mentioned parameters was analyzed at three different pressures in the 
range of 50–700 Torr. In this section, the analysis was carried out by 
monitoring the signal related to the strongest NO absorption feature, 
located at 1900.07 cm− 1, in a mixture containing 250 ppm of NO in 
standard air. 

3.1. BF-QEPAS scan rate and lock-in time constant optimization 

The temporal response of a resonator that is excited by an impulse 
depends on the accumulation time τ and the time constant of the lock-in 
amplifier. The BF-QEPAS signal as a function of the scan rate when the 
lock-in time constant is fixed to 5 ms is shown in Fig. 2 for three different 
pressure values, namely 100 Torr, 400 Torr, and 700 Torr. 

For each investigated pressure value, the BF-QEPAS signal preserves 
the same trend as a function of the wavelength scan rate, with a well- 
defined peak value maximizing the signal. Values recorded at 
100 Torr are significantly lower with respect to those acquired at higher 
pressures: this is due to the pressure-dependence of the QEPAS signal 
resulting in a trade-off between the increase of the QTF quality factor 
and the reduction of the NO relaxation rate when reducing the pressure 
[42]. Due to the dependence of the quality factor on the pressure [42], 
the QTF accumulation time decreases as the pressure increases. For this 
reason, the optimal wavelength scan rate shifts from 0.0770 cm− 1Hz at 
100 Torr to higher rates, i.e., 0.592 cm− 1Hz at 700 Torr. As a result of 
Fig. 2, the optimal wavelength scan rate and the optimal working 
pressure for this BF-QEPAS system resulted in 0.335 cm− 1Hz and 
400 Torr, respectively. 

Fixing the wavelength scan rate at 0.335 cm− 1Hz, the BF-QEPAS 

signal was acquired at different lock-in time constants for 100 Torr, 
400 Torr, and 700 Torr gas pressures, and the results are shown in Fig. 3. 

For each gas pressure value, the results show that the BF-QEPAS 
signal is almost independent by the lock-in time constant up to 104 µs; 
at higher values, it slightly decreases. The optimal time constant maxi-
mizing the BF-QEPAS thereby resulted in 5 ms at 400 Torr: this value is 
significantly lower than 100 ms, which is the time constant typically 
employed in QEPAS experiments, opening the way to faster 
measurements. 

Finally, the optimized QEPAS and BF-QEPAS signals were acquired 
in the 50–700 Torr range, with a lock-in time constant set to 100 ms and 
5 ms, respectively. The results are shown in Fig. 4. 

The QEPAS and BF-QEPAS signal trends are similar: the maximum 
value was measured at 400 Torr with an optimal sinewave modulation 
amplitude of 5 mA for both techniques. 

3.2. Optimization of modulation frequency 

Fig. 5 reports the BF-QEPAS signal as a function of the modulation 
frequency together with the QTF resonance curve of the fundamental in- 
plane flexural mode, at 400 Torr. 

For the QTF resonance curve, a peak frequency (f0) of 12439.6 Hz, a 
quality factor of 13720, and, in turn, an accumulation time of 0.35 s 
were extracted for the fundamental in-plane flexural mode by the 
electrical excitation. With respect to the QTF resonance curve, the BF- 
QEPAS trend exhibits two symmetric sidelobes detuned of Δf =
± 1.7 Hz with respect to f0. The lower frequency (f = f0 

Fig. 2. BF-QEPAS peak signal as a function of the wavelength scan rate ac-
quired at 100 Torr (red dots), 400 Torr (blue diamonds) and 700 Torr (green 
squares), when a gas mixture with 250 ppm of NO in standard air flows through 
the acoustic detection module ADM01. 

Fig. 3. BF-QEPAS peak signal as a function of the lock-in time constant at 
100 Torr (red dots), 400 Torr (blue diamonds) and 700 Torr (green squares), 
acquired when a gas mixture with 250 ppm of NO in standard air flows through 
the acoustic detection module ADM01. 
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− Δf = 12437.9 Hz) was selected in the calibration phase for the sinu-
soidal modulation. 

3.3. Calibration of the sensing systems and multiple gas detection 

As a result of the optimization phase, both techniques were 
compared at 400 Torr by using different gas mixtures with a 
50–300 ppm NO concentration range diluted in standard air for cali-
bration. The signal of the strongest NO absorption line located at 

1900.07 cm− 1 was considered in this phase. Fig. 6(a) shows the QEPAS 
scans at different NO concentrations. 

For each spectral scan, peak values were extracted and plotted as a 
function of the NO concentration in Fig. 6(b). A detection sensitivity of 
2.02 mV/ppm was retrieved from the slope of the linear fit of data 
points. The noise level was measured by flushing standard air through 
the acoustic detection module and acquiring the 1σ standard deviation 
of the signal, while the laser emission was fixed at the NO absorption line 
(slow triangle ramp off). The measured QEPAS noise was 0.18 mV, 
leading to an MDL of 90 ppb and to a normalized noise equivalent ab-
sorption (NNEA) value of 5.9⋅10− 9 cm− 1 W Hz− 1/2. 

The BF-QEPAS signals measured for different NO concentrations are 
reported in Fig. 7(a). 

The calibration curve in Fig. 7(b) was obtained by extracting the 
value of the first positive peak (labeled as P1 in Fig. 7(a)) for each NO 
concentration. These values were plotted as a function of the NO con-
centration in Fig. 7(b). The slope of the linear fit of data points returns a 
BF-QEPAS sensitivity of 1.16 mV/ppm. Similarly to QEPAS, for BF- 
QEPAS the noise signal was measured by flushing standard air and 
acquiring the 1σ standard deviation of the signal, keeping the laser 
emission at the NO absorption line. The measured noise level resulted in 
0.21 mV, leading to an MDL of 180 ppb and to a NNEA value of 2.5⋅10− 9 

cm− 1 W Hz− 1/2. Considering the BF model presented in [31], the num-
ber of peaks (npeaks) in Fig. 7(a) can be estimated as  

npeaks = Δf ⋅ tnoise                                                                                  

where Δf is the beat frequency optimizing the BF-QEPAS signal (shown 
in Fig. 5) and tnoise is the time needed to reach the noise level, calculated 
as  

tnoise = τ ⋅ ln(Vpeak/vnoise)                                                                        

where τ is the accumulation time of the QTF, Vpeak is the peak value of 
P1 and vnoise is the measured noise level. 

For each NO concentration, the five positive peaks (P1–P5 in Fig. 7 
(a)) can be employed to determine both the resonance frequency and the 
quality factor of the QTF. The time intervals between the five peaks were 
employed to calculate the inverse of beat frequency Δf. Then, the QTF 
resonance frequency can be retrieved as f0 = f + Δf = 12439.6 Hz. An 
exponential fit e-t/τ of the five peaks was used to estimate the QTF 
accumulation time τ and retrieve its quality factor. As shown in Table 1, 
the calculated resonance frequency is very accurate, and the mean value 
and the standard deviation of the estimated quality factor are 13078 and 
152, respectively, corresponding to a relative error of 1.1 %. Such a 
relative error is largely within the error bar of parameters extracted from 
the fitting procedure and used for the estimation of the quality factor. 
Both f0 and Q retrieved from the BF-QEPAS signal can be employed to 
validate the measurements. 

A full scan of the laser tuning range was performed in order to detect 

Fig. 4. Optimized QEPAS (red dots) and BF-QEPAS (blue squares) peak signals 
in the 50–700 Torr pressure range under investigation when a gas mixture with 
250 ppm of NO in standard air flows through the acoustic detection mod-
ule ADM01. 

Fig. 5. Red dots: BF-QEPAS peak signal for a gas mixture of 250 ppm of NO in 
standard air as a function of the laser modulation frequency at 400 Torr. Black 
dots: Resonance curve at 400 Torr measured electrically exciting the QTF. 

Fig. 6. (a) QEPAS spectral scans measured for different NO concentrations in standard air. (b) QEPAS peak values were plotted as a function of the NO concentration 
(black dots). The red solid line is the best linear fit of the experimental data. 
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both the water vapor and nitric oxide in a mixture composed of 250 ppm 
of NO in standard air. The acquired QEPAS spectrum is shown in Fig. 8. 

As expected, the 250 s-long spectral scan resolves three well-isolated 
2f-absorption features. The first feature at 22 s with a peak value of 
~ 9 mV (see the inset in Fig. 8) is related to the water vapor absorption 
line located at 1901.76 cm− 1. The second and the third features at 160 s 
and 205 s with peak values of ~ 220 mV and ~ 520 mV correspond to 
the NO absorption lines located at 1900.52 cm− 1 at 1900.07 cm− 1, 
respectively. The same scan was investigated with the BF-QEPAS tech-
nique, and the acquired spectrum is shown in Fig. 9. 

The same time constant employed in the NO calibration was used. 
The staircase ramp was optimized to fully scan the spectral range and 
well-resolve the three transient responses: three stationary levels of the 
ramp were employed while keeping the same scan rate optimized for the 
detection of NO. The first signal, in the time range from 2 s to 5 s and 
with a maximum value of ~ 16 mV, corresponds to the H2O absorption 
feature at 1901.76 cm− 1 (see the inset in Fig. 9). The second and the 
third signals, fall in the respective time ranges from 6 s to 9 s and from 
10 s to 13 s and with respective maximum values of ~ 110 mV and 
~ 290 mV, corresponding to the two selected NO absorption features at 
1900.52 cm− 1 and 1900.07 cm− 1, respectively. The analysis of the 
measured BF-signals returned a resonance frequency and a quality factor 
of 12439.6 ± 0.1 Hz and 13140 ± 140 (i.e., 1 %), respectively, in 
excellent agreement with the same parameters measured from the QTF 
characterization (Fig. 5). BF-QEPAS allows the reduction of the overall 

scanning time of more than one order of magnitude, from 250 s (QEPAS 
technique) to 14 s. 

4. Conclusions 

In this work, a comparison between QEPAS and BF-QEPAS tech-
niques for environmental monitoring applications was reported. The 
spectrophone was composed of a custom T-shaped QTF resonating at 
12.4 kHz, coupled with two acoustic resonator tubes. Both NO and H2O 
were detected in the same gas mixture, employing an ICL emitting at a 
central wavelength of 5.263 µm. Considering the selected NO absorption 
feature at 1900.07 cm− 1,a MDL of 90 ppb and a NNEA of 5.9⋅10− 9 cm− 1 

W Hz− 1/2 were achieved using the QEPAS system, corresponding to a 
lock-in time constant of 100 ms. The BF-QEPAS system reaches an NO 
MDL of 180 ppb and a NNEA of 2.5⋅10− 9 cm− 1 W Hz− 1/2, corresponding 
to a lock-in time constant of 5 ms. 

BF-QEPAS is characterized by a slightly lower performance in terms 
of detection limit, but, considering the much short measurement time 
required, shows a better NNEA value and allows a validation of the 
measurement by monitoring the spectrophone resonance properties, 
with a respective accuracy on the resonance frequency and quality factor 
of 0.1 Hz and 1 %. Furthermore, the possibility to detect both NO and 
H2O in a gas mixture was demonstrated. With respect to standard 
QEPAS, the BF-QEPAS technique reduces the overall scanning time by a 

Fig. 7. (a) BF-QEPAS spectral scans measured for different NO concentrations in standard air. (b) BF-QEPAS P1 values were plotted as a function of the NO con-
centration (black dots). The red solid line is the best linear fit of the experimental data. 

Table 1 
QTF fitting parameters at different concentrations of NO.  

Concentration 50 ppm 100 ppm 150 ppm 200 ppm 250 ppm 300 ppm 

f0(Hz)  12439.6  12439.6  12439.6  12439.6  12439.6  12439.6 
Q  13052  12896  13091  13209  12935  13287  

Fig. 8. QEPAS signal for a gas mixture with 250 ppm of NO in standard air in 
the full laser tuning range. 

Fig. 9. BF-QEPAS signal for a gas mixture with 250 ppm of NO in standard air 
in the full laser tuning range. 
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factor of ~ 18, requiring less than 15 s to scan three different absorption 
features and a few seconds for each of them. These results promote BF- 
QEPAS as a cutting-edge technique for environmental monitoring of 
pollutants with UAV-assisted technology, requiring fast measurements 
and data communication with ground control stations or when the rapid 
variation of the NO concentration is expected. A study on the humidity 
effect on both QEPAS and BF-QEPAS signals will be carried out to 
further compare both techniques [9,43]. Finally, the spectrophone 
structure and its front-end electronics could be further optimized for the 
BF-QEPAS technique, thus reducing the minimum detection limit dif-
ference with the QEPAS technique. 
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