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A B S T R A C T   

We present an optical sensor based on light-induced thermoelastic spectroscopy for the detection of hydrogen 
sulfide (H2S) in sulfur hexafluoride (SF6). The sensor incorporates a compact multi-pass cell measuring 6 cm × 4 
cm × 4 cm and utilizes a quartz tuning fork (QTF) photodetector. A 1.58 µm near-infrared distributed feedback 
(DFB) laser with an optical power of 30 mW serves as the excitation source. The sensor achieved a minimum 
detection limit (MDL) of ~300 ppb at an integration time of 300 ms, corresponding to a normalized noise 
equivalent absorption coefficient (NNEA) of 3.96 × 10− 9 W⋅cm− 1⋅Hz− 1/2. By extending the integration time to 
100 s, the MDL can be reduced to ~25 ppb. The sensor exhibits a response time of ~1 min for a gas flow rate of 
70 sccm.   

1. Introduction 

Sulfur hexafluoride (SF6) is a colorless, odorless, non-toxic, non- 
flammable chemically inert gas. It possesses excellent dielectric prop-
erties, making it an exceptional arc-quenching medium. When 
compared to air, SF6 exhibits a significantly higher arc-extinguishing 
ability, being 100 times more effective. Moreover, SF6 demonstrates 
superior insulation capability, which is 2.5 times better than that of air, 
along with a density that is 5.6 times greater. Consequently, SF6 has 
emerged as a replacement for oil and compressed air as an insulation 
medium in power grid systems. Applications of SF6 include gas-insulated 
switchgears, transmission pipes, gas circuit breakers, and transformers 
[1–3]. In power grid, gas-insulated switchgears (GIS) play a crucial role 
in facilitating high-voltage switch on/off operations exceeding 1 MV [4]. 
Nevertheless, over prolonged periods of operation, corona, partial 
discharge, and spark discharge may transpire within the GIS. SF6 is 
typically stable under normal conditions. However, in the presence of 
metals within an overheated environment, discharge events can lead to 
the generation of various decomposition compounds [5,6], such as SF4, 
SF3, SF2, and S2F10. These low-fluorine sulfides have the potential to 

react with minute amounts of air and moisture present within the 
equipment, resulting in the formation of toxic and corrosive compounds, 
such as H2S, HF, SOF2, SO2F2, SOF4, SO2 and CO [7–10]. Monitoring the 
concentrations and formation rates of these decomposition products can 
provide insights into the type and progression of internal faults within 
the equipment [11]. The detection of hydrogen sulfide (H2S) traces 
holds particular significance in assessing the discharge energy of a fault 
and determining whether the fault involves solid insulation materials 
[12]. Therefore, achieving detection sensitivity in the sub ppm-range for 
H2S in SF6 becomes crucial for ensuring the security maintenance of the 
power grid [13]. 

In recent years, various techniques have been employed for the 
detection of decomposition compounds formed within the SF6 matrix. 
These techniques include tube detection, metal-oxide semiconductor 
sensing, gas chromatography [14–16] and, more recently, in situ and 
real-time optical sensors [17,18]. In 2017, the first demonstration of a 
photoacoustic spectroscopy (PAS) sensor for H2S detection in SF6 was 
conducted [13]. PAS employs a microphone to detect the faint sound 
waves produced as a result of molecule absorption through the photo-
acoustic effect. However, the use of a highly sensitive microphone with a 
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wide acoustic detection bandwidth presents a challenge when installing 
a PAS sensor in a noisy environment, as any external acoustic source can 
contribute to the overall signal. As a variant of PAS, quartz enhanced 
photoacoustic spectroscopy (QEPAS) is particularly well-suited for in 
situ and real-time measurement applications owing to its robust im-
munity to environmental noise [19]. This is achieved by utilizing a 
quartz tuning fork (QTF) in place of the traditional microphone for 
sound wave detection. The QTF operates at resonant frequencies with a 
narrow bandwidth (<1 Hz), effectively filtering out any noise contri-
butions outside of this range and ensuring high immunity to environ-
mental noise. In QEPAS, the quartz tuning fork (QTF) is completely 
immersed in the fluid containing the target molecules that need to be 
detected. However, this immersion poses limitations on the application 
of QEPAS techniques for the detection of decomposition compounds 
within the SF6 matrix for two primary reasons. First, the heavy molec-
ular weight of SF6 molecules results in significant damping of the vi-
bration amplitudes of the QTF within the SF6-based matrix, as compared 
to the behavior observed in standard air [20]. Second, decomposition 
substances such as SO2 and H2S in SF6 exhibit high corrosiveness, 
particularly towards the metal electrodes coated on the surfaces of the 
QTF. Consequently, this presents a constraint on the long-term operation 
of the QEPAS system. [21,22]. 

Recently, QTFs have been proposed as a sensitive and cost-effective 
alternative to infrared photodetectors in optical sensors that utilize 
light-induced thermoelastic spectroscopy (LITES) [23–27]. The LITES 
setup architecture closely resembles that of tunable diode laser spec-
troscopy combined with the wavelength modulation technique. In this 
setup, an intensity-modulated laser beam traverses a gas cell, and sub-
sequently, the light emerging from the gas cell is focused onto one of the 
prongs of the QTF, inducing localized modulated heating. This thermal 
energy generates a local strain field, which in turns give rises to a 
piezoelectric charge distribution. Similar to QEPAS, this charge distri-
bution can be collected using the metal contact patterns deposited on the 
surface of the QTF. Thus, both QEPAS and LITES utilize the properties of 
the QTF, such as the high resonance Q-factor, narrow frequency band-
width, wavelength independence, and the possibility of implementing a 
wavelength modulation approach with second harmonic detection to 
achieve a noise-free background [24]. The main difference between 
QEPAS and LITES lies in the physical phenomenon that causes the 
oscillation of the QTF prongs and consequently the production of an 
electric charge distribution. In contrast to QEPAS, LITES offers the 
distinct advantage of having the QTF located outside the gas cell, 
enabling non-contact measurements [25–32]. 

Here we report on the implementation of a LITES sensor for detecting 
H2S in SF6 in order to monitor gas-insulated switchgears. The vibrational 
characteristics of a standard 32 kHz-QTF are analyzed in different en-
vironments (SF6 and N2), validating the benefits of employing LITES 
technology compared to QEPAS for SF6 decomposition monitoring. The 
operating parameters of the developed LITES sensor are optimized, and 
the obtained results are thoroughly discussed. 

2. Vibration analysis of QTF in N2 and SF6 environments 

The QTF is a mechanically forked structure composed of a quartz 
crystal with piezoelectric properties. When it absorbs energy from sound 
waves or a modulated laser beam that resonates with the frequency of 
the QTF, the prongs of the fork initiate vibration, resulting in the gen-
eration of a strain field. Utilizing the piezoelectric effect, a charge dis-
tribution is produced and collected through the electrode pattern 
distributed on the surface of the prongs. This electrical signal can be 
demodulated using a lock-in amplifier, allowing for the extraction of a 
signal that is directly proportional to the intensities of the sound waves 
(QEPAS) or the absorbed laser beam (LITES). 

The resonant frequency of the QTF is determined by the prongs ge-
ometry, and the resonant frequency can be estimated by the following 
equation [32]: 
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where k = Etw3/(4L3) is stiffness, meff = 0.2427ρLwt is effective mass, E 
and ρ are Young’s modulus and density of quartz, respectively, L, w, t are 
the prongs length, width, and thickness, respectively. L, w, t for a com-
mercial standard 32-kHz QTF were measured to be 3.8 mm, 1.4 mm and 
0.3 mm, respectively. For certain gases with low relaxation rates such as 
methane, carbon monoxide, and nitric oxide, the frequency of a standard 
32-kHz QTF may not satisfy the requirement τ ≪ 1⁄f (τ is molecular 
vibration-rotational relaxation rate) needed for effective generation of 
electrical signals. However, when measuring H2S concentration, which 
is a fast-relaxing molecule, the 32-kHz QTF can be operated successfully 
[33]. In addition to its small size, the standard 32-kHz QTF offers several 
advantages including affordability, low signal loss, wide dynamic range, 
robustness against environmental noise, and high temperature resis-
tance [34–37]. Nonetheless, its applicability for detecting SF6 decom-
position may be limited due to the high density of SF6 in comparison to 
standard air or N2. 

When a QTF undergoes small amplitude harmonic oscillations while 
immersed in a fluid medium, it induces movement in the surrounding 
fluid. This phenomenon leads to energy dissipation through acoustic 
losses and introduces additional inertia. As a result, the reaction force 
comprises a resistive component responsible for energy dissipation and a 
reactive component that contributes to the increased inertia experienced 
by the vibrating QTF. Consequently, the vibration of a QTF’s prong can 
be described by a fourth-order differential equation under these condi-
tions. [32]: 

EI
∂4y
∂x4 (x, t)+Cd

∂y
∂t

(x, t) + (ρA+ u)
∂4y
∂t4 (x, t) = 0 (2)  

where ρ represents the density of the quartz material, E stands for the 
Young’s modulus of the material, t denotes time, Cd is the damping 
parameter, u is the added mass per unit length, A is defined as the cross 
product of the crystal thickness w and the prong width T, and the di-
rections x and y refer to the plane of the QTF. For small damping, it has 
been demonstrated that the presence of an added mass causes a red shift 
Δf in the resonance frequency of the QTF [34], in comparison to its 
resonance frequency in a vacuum: 

Δf = −
1
2

u
ρA

(3) 

The added mass is directly proportional to the density ρ0 of the gas 
medium and, consequently, its pressure. Thereby when operating the 
QTF in SF6 compared to N2 or standard air, larger red shifts are expected. 

The Q-factor of a resonance mode is a measure of the energy loss 
experienced by the prongs while vibrating. To model the damping effect 
caused by air, an analytical expression derived by Hosaka et al. [38] can 
be utilized, allowing for the formulation of the contribution of gas 
damping to the Q-factor: 

Qgas ≈
4ρTw2f

3μw + 3
4w2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4πρ0μf

√ (4)  

where μ is the gas viscosity. Gas damping has been identified as the 
primary mechanism responsible for energy loss, both in the case of N2 
and SF6 [20]. The density of N2 and SF6 are 1.16 kg/m3 and 6.52 kg/m3 

[15], thereby, a lower QTF Q-factor is expected when it is placed in a SF6 
matrix with respect to N2 or standard air. To evaluate the decrease in the 
Q-factor of a 32 kHz QTF when operated in SF6 compared to N2, the 
experimental arrangement illustrated in Fig. 1(a) was utilized. A 
high-resolution function generator was utilized to generate a sine 
voltage spanning the frequency range of 32760–32770 Hz for exciting 
the QTF. The current output from QTF was converted to voltage through 
an operational amplifier and subsequently demodulated using a lock-in 
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amplifier (Stanford Research Model SR830). The lock-in amplifier was 
configured with parameters including a filter slope of 12 dB/oct and a 
time constant of 100 ms, resulting in a detection bandwidth of 
1.6675 Hz. During the measurements, an integration time of 300 ms was 
employed. The resonance curves of a 32 kHz-QTF immersed in SF6 or N2 
at atmospheric pressure are displayed in Fig. 1(b). The QTF signal at the 
resonance frequency in SF6 is 3.2 times smaller than that in N2, the 
quality factor drops from 12741 to 3757, and, as expected, the reso-
nance frequency red shifts. 

3. LITES H2S detector in SF6 setup 

In contrast to QEPAS, the LITES technique offers a non-contact 
sensing approach with comparable sensitivity levels [39–41]. A 
scheme of the configuration of a standard QEPAS and LITES technique is 
reported in Fig. 2(a) and (b), respectively. 

In the LITES technique, the QTF operates as an infrared photode-
tector, offering a cost-effective alternative to expensive photodetectors 
while eliminating the need for thermoelectric cooling systems [40]. A 
schematic of the complete architecture of the LITES sensor for H2S 
detection in a SF6 matrix is depicted in Fig. 3. For the excitation source, a 
low-cost distributed feedback (DFB) pigtailed laser (FITEL, model FRL 
15DCWD-A82), emitting within the range 1563–1583 nm, was 
employed. The laser is securely mounted on the driver board and 
controlled by a computer to maintain a stable temperature and set the 
laser current. The DFB laser targets a specific H2S absorption peak 
occurring at 6320.55 cm− 1. Despite the low line strength of the targeted 
H2S absorption feature, which measures 1.1 × 10− 22 cm/mol, no fiber 
amplifier was utilized in contrast to previous experiments [15,33]. This 
simplifies the setup architecture, reduces the overall cost, and minimizes 
the size of the sensor system. A function generator is used to modulate 
the laser current at the half of the QTF’s fundamental frequency. The 
function generator is additionally responsible for supplying a voltage 
ramp to the laser, allowing for a gradual scanning of the laser 

wavelength across the desired absorption feature. The fiber output beam 
is then coupled with a non-commercial mini multi-pass cell (MMPC) that 
contains the target gas sample. The MMPC consists of two spherical 
mirrors and is designed to generate a spot pattern with 7-nonintersec-
ting-circle [18]. Within the MMPC, the laser beam undergoes over a 
hundred reflections between two high-reflection mirrors. Subsequently, 
it exits through an aperture in the output mirror and illuminates the QTF 
near to one of the prongs base, precisely at 3.8 mm from the QTF’s prong 
top, where the strongest LITES signal is predicted [30,42]. The QTF 
signal is then directed to a low-impedance amplifier with a feedback 
resistor of 10 MΩ. Its output signal is subsequently fed into a lock-in 
amplifier (Stanford Research Systems, Model SR830) for the demodu-
lation at the QTF resonance frequency, utilizing wavelength modulation 
and second harmonic detection. The lock-in amplifier parameters 
employed include a filter slope of 12 dB/oct, a time constant of 100 ms, 
and an integration time of 300 ms, which are consistent with previous 
experiments. 

The MMPC is positioned within a chamber that equipped with a pre- 
aligned fiber collimator and a fiber connector (see Fig. 3). These com-
ponents facilitate the coupling of the pigtail laser on one side and enable 
the laser beam to exit through a quartz window with a diameter of 1 cm 
on the opposite side. To regulate the pressure inside the chamber and the 
gas flow, a pressure meter and a flux meter are employed. To generate 
various concentrations of H2S in SF6, a gas mixing system is utilized, 
starting from two certified standard cylinders containing pure SF6 and 
SF6 with a concentration of 100 ppm H2S. These gas mixtures are then 
introduced into the MMPC chamber for sensor analysis, testing, and 
calibration purposes. Within the experimental setup, the QTF is housed 
in a small cell with a volume of 6 cm3, featuring an optical window. This 
cell is connected to a diaphragm pump and a pressure meter via a needle 
valve, allowing for the adjustment and monitoring of the QTF’s oper-
ating pressure. 

Compared to the traditional LITES technology that utilizes a gas cell 
as absorption path [23], the MMPC enables the achievement of a 

Fig. 1. (a) schematic of the setup used for QTF frequency scanning. OP: operational amplifier, DAQ: data acquisition, feedback resistor: Rf= 10 MΩ. (b) Frequency 
response curves of the 32 kHz-QTF at atmospheric pressure in N2 and SF6. 

Fig. 2. (a) Sketch of a standard QEPAS technique. The QTF is immersed in the gas cell. (b) Sketch of a standard LITES technique. The QTF operates as an infrared 
photodetector outside of the gas cell. 
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significantly longer pathlength through multiple reflections of laser 
beam from the mirrors. The MMPC consists of two 1-inch CaF2 spherical 
mirrors with a reflectivity of 99% and a radius of curvature of 2.5 cm. It 
is constructed with a cage structure measuring 6 cm × 4 cm × 4 cm, 
providing an internal sample volume of 67 cm3. All brackets of the 
MMPC are made of carbon fiber material, which offers advantages such 
as high strain resistance, lightweight properties, and the ability to 
operate in extreme environments and ultra-high temperatures. The fiber 
collimator, equipped with a G-lens, is integrated on the left mirror frame 
(see Fig. 3). By utilizing the FC/APC interface, the fiber laser can be 
connected to the MMPC at an angle of 8◦ relative to the optical axis. 
Subsequently, the laser beam undergoes multiple reflections back and 
forth between the mirrors for a total of 107 times before eventually 
exiting through a small hole on the right mirror. A picture of the 
multi-pass cell light point/pattern is reported in Ref. [18]. Given the 
distance between the mirrors is ~3.9 cm, the total optical path length 
amounts to ~4.2 m. 

4. System performance assessment 

When the temperature of the laser driver is set to 31.3 ◦C and the 
output current to 148 mA, the wavenumber emission is 6320.55 cm− 1 

with an optical power of 30 mW. The function generator was utilized to 
enable periodic scanning of the 6320 cm− 1 - 6321 cm− 1 range by the 
laser, targeting the selected H2S absorption line [43]. Since the perfor-
mance of the LITES sensor operating in wavelength modulation depends 
on the current modulation amplitude, this parameter was preliminarily 
optimized. The peak-to-peak value of the current modulation maxi-
mizing the LITES signal was determined to be 19 mA. In the next step, 
the photodetection performance of the QTF was evaluated as a function 
of the operating pressure. As shown in Fig. 4, the WM LITES signal was 
measured for a gas mixture of 100 ppm H2S/SF6 at two different 
representative QTF pressures: 60 Torr and 5 Torr. The gas flow rate 
within the MMPC remained constant at 70 standard cubic centimeters 
per minute (sccm) for both measurements, while the pressure within the 
MMPC was maintained at atmospheric pressure (760 torr). It was 
observed that as the QTF pressure decreased, the LITES signal increased, 
reaching its highest value when operating at the lowest achievable 
pressure of 5 Torr. Under this condition, the LITES signal nearly doubled 
compared to the signal measured at 60 Torr. This behavior can be 
attributed to the fact that the LITES signal is proportional to the accu-
mulation time of the oscillator, which is in turn related to the quality 
factor (Q-factor) of the QTF. The Q-factor is inversely proportional to the 
operating pressure. Based on this observation, all subsequent 

experiments were conducted with the QTF operating at 5 Torr. The 
performance of the H2S in SF6 sensor system was then investigated. 

Starting with the certified concentration of 100 ppm H2S in SF6, the 
LITES signal was measured at various H2S concentrations generated 
using a gas dilution system by keeping the flow rate always at 70 sccm. 
The spectral scans of the H2S absorption line at different H2S concen-
trations in SF6 are reported in Fig. 5(a). For each spectral scan, the peak 
values were extracted and plotted as a function of H2S concentrations in 
Fig. 5(b). The data were fitted with a linear function, yielding a slope of 
21 μV/ppm and an R2 value of 0.9996, indicating a highly linear sensor 
response to H2S concentrations. The inset in Fig. 5(a) displays the 
background noise level of the system, measured in a spectral region with 
no H2S absorption features. The 1-σ noise level was ~6 μV for an inte-
gration time of 300 ms and the minimum detection limit (MDL) of the 
sensor was ~300 ppb. The normalized noise equivalent absorption 
(NNEA) coefficient was determined to be 3.96 × 10− 9 W⋅cm− 1⋅Hz− 1/2. 

To estimate the 1σ-noise level as a function of the integration time, 
an Allan-Werle deviation analysis was conducted. During the analysis, 
the laser was locked onto the selected H2S absorption peak while pure 

Fig. 3. Schematic of the LITES sensor for H2S detection in the SF6 matrix. NV: needle valve; Rf: feedback resistor.  

Fig. 4. Normalized WM LITES spectra measured for a mixture of 100 ppm H2S 
in SF6 at two different operating pressures of the QTF-photodetector: 5 Torr 
and 60 Torr. 
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SF6 was continuously flowing in the MMPC. The measured Allan-Werle 
deviation plot is shown in Fig. 6. Remarkably, a minimum detection 
limit of ~ 25 ppb can be achieved with an integration time of 100 s. This 
sensitivity level is achieved in half the time required by a recently re-
ported multi-pass differential photoacoustic sensor, demonstrating the 
improved performance of our system [44]. 

For the real-time measurement of SF6 decompositions in the GIS 
system, the response time is a crucial sensor parameter as it determines 
the accuracy of monitoring and plays a key role in timely maintenance of 
GIS equipment. A faster response time leads to reduced data delay 
distortion and enables early detection of GIS faults. The compact design 
of the enclosed MMPC, with an internal volume of only 67 cm3, facili-
tates quick exchange of the gas sample, allowing for real-time mea-
surement of H2S concentration. To evaluate the sensor’s response time, a 
gas flow rate of 70 sccm was chosen, and initially, pure SF6 was purged 
inside the MMPC. The laser drive current was set at 148 mA to lock the 
laser wavelength to the peak of the H2S absorption line. Subsequently, a 
rapid switching mechanism interrupted the flow of pure SF6 and initi-
ated the flow of a 100 ppm H2S in SF6 mixture into the MMPC. The rise 
time refers to the duration required for the LITES signal to increase from 
the background level to its steady-state value. Finally, the system was 
switched back to pure SF6 to measure the fall time, which represents the 
duration needed to reach the background signal level. Fig. 7 depicts that 

the recorded sensor signal during all the measurements. The rise time 
and fall time were determined to be ~62 s and ~67 s respectively, 
which aligns well with the estimated MMPC sample exchange time of 
~57 s (chamber volume divided by gas flow rate). The test was repeated 
multiple times without any discernible differences. 

5. Conclusions 

In this work, we reported on a LITES sensor capable of detecting H2S 
concentrations in a SF6 matrix. LITES, as a non-contact sensing tech-
nique, is well-suited for applications that involve the analysis of corro-
sive gas samples, such as decomposed SF6 matrices. The sensor setup 
consisted of a 1.58 µm DFB laser as the excitation source and a standard 
QTF coupled with a compact multi-pass cell as the photodetector. The 
sensor exhibited a linear dynamic range of 0–100 ppm, with an achieved 
MDL of ~300 ppb and an integration time of 300 ms. This sensitivity 
improved to ~25 ppb for a longer integration time of 100 s. The sensor 
demonstrated a response time of ~1 min for a gas flow rate of 70 sccm. 
These achieved performance metrics meet the requirements for moni-
toring GIS systems. In future developments, erbium-doped fiber ampli-
fiers could be implemented to enhance the laser power and further 
improve the detection sensitivity. 

Fig. 5. (a) WM LITES spectra at different H2S concentrations in SF6, as reported. The laser current was swept from 120 mA to 170 mA. (b) QEPAS peak signals as a 
function of the H2S concentrations, depicted by black square symbols. The data points were fitted with a linear function, shown by the red line, representing the best 
linear fit. 

Fig. 6. Allan-Werle deviation plot of the QEPAS signal measured in pure SF6 as 
a function of the integration time. For a 100 s integration time, the minimum 
detection limit can be significantly reduced to ~25 ppb. 

Fig. 7. Sensor response time measurement. Rise and fall times are highlighted 
in the graph. 
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