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A B S T R A C T   

We present a quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensor designed for precise monitoring of 
ammonia (NH3) at ppb-level concentrations. The sensor is based on a novel custom quartz tuning fork (QTF) with 
a mid-infrared quantum cascade laser emitting at 9.55 µm. The custom QTF with a hammer-shaped prong ge-
ometry which is also modified by surface grooves is designed as the acoustic transducer, providing a low 
resonance frequency of 9.5 kHz and a high-quality factor of 10263 at atmospheric pressure. In addition, a 
temperature of 50 ◦C and a large gas flow rate of 260 standard cubic centimeters per minute (sccm) are applied to 
mitigate the adsorption and desorption effect arising from the polarized molecular of NH3. With 80-mW optical 
power and 300-ms lock-in integration time, the detection limit is achieved to be 2.2 ppb which is the best value 
reported in the literature so far for NH3 QEPAS sensors, corresponding to a normalized noise equivalent ab-
sorption coefficient of 1.4 × 10− 8 W cm− 1 Hz− 1/2. A five-day continuous monitoring for atmospheric NH3 is 
performed, verifying the stability and robustness of the presented QEPAS-based NH3 sensor.   

1. Introduction 

Ammonia (NH3), a colorless, poisonous, alkaline gas with a strong 
pungent odor, constitutes the major component of total reactive nitro-
gen. The primary source of atmospheric NH3 arises from agricultural 
emissions, which encompass animal husbandry and the application of 
NH3-based fertilizers. Additionally, NH3 emission originates from 
diverse sources such as industrial processes, vehicular emissions and 
volatilization from soils and oceans [1–4]. Currently, ammonia repre-
sents one of the significant contributors to atmospheric pollution. This is 
primarily attributed to the reaction of NH3 reacts with acidic gases in the 
atmosphere, resulting in the formation of ammonium salts that 
contribute to the generation of particulate matter (PM2.5) in the at-
mosphere. Despite its involvement in photochemical smog, acid rain and 
aerosol deposition, NH3 is not regulated under the National Ambient Air 

Quality Standards by the US Environmental Protection Agency (EPA), 
causing substantial difficulties and rigorous challenges to its emission 
reduction [5,6]. Therefore, sensitive and selective NH3 detection has 
received considerable attention in the fields of environmental moni-
toring, chemical and pharmaceutical processing, and disease diagnosis. 

To target these applications, various techniques have been developed 
and utilized for the detection of NH3 concentration, including chem-
iluminescence, nanomaterials sensing and gas chromatography. How-
ever, these methods have limitations in selectivity and real-time 
monitoring, and easily introduce human errors which degrade the 
detection sensitivity and response time. Consequently, optical gas 
sensing techniques are being implemented frequently since the capa-
bilities of fast response, high sensitivity and real-time monitoring 
[7–10]. For instance, tunable diode laser absorption spectrum (TDLAS), 
cavity ring down spectrum (CRDS), photo acoustic spectroscopy (PAS) 
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and difference optical absorption spectrum (DOAS) are typical ammonia 
detection methods based on laser absorption spectroscopy technology. 
Among these methods, PAS stands out as an appealing spectroscopic 
technique benefited from its simplicity, ruggedness and 
zero-background nature [11–13]. The PAS technique detects the pho-
toacoustic signal generated from the selective absorption of modulated 
excitation energy and a wide-band microphone is employed as detecting 
element to collect the sound wave. In PAS-based sensors, the detection 
sensitivity depends on the geometry of the gas cell and the performance 
of microphone. Consequently, environmental noise can be easily intro-
duced into the sensing system due to the low resonant frequency char-
acteristics of the acoustic cell. Quartz enhanced photoacoustic 
spectroscopy (QEPAS), an alternative approach to PAS, utilizes a spec-
trophone consisting of a quartz tuning fork (QTF) and a resonant 
acoustic micro resonator (AmR) tube as an acoustic transducer to detect 
the weak sound wave [14–20]. This technique inherits PAS’s inherent 
advantages of excitation-wavelength independence and sensitivity pro-
portional to optical power. Compared to conventional PAS, the QTFs 
offer higher resonant frequencies ranging from several to tens of kHz 
and quality factors of ~104. In most of the QEPAS-based sensors, stan-
dard commercial QTFs with an oscillation frequency of 32.7 kHz and a 
frequency response bandwidth of nearly 3 Hz are exploited, enabling 
immunity to 1/f ambient noise. Such characteristics make QEPAS one of 
the most attracted techniques for ambient NH3 detection. A. Kosterev 
et al. developed the QEPAS-based NH3 sensor utilizing a NIR laser source 
to detect NH3 and obtained a minimum detection limit (MDL) of 650 
ppbv (parts per billion by volume) [21]. In 2015 and 2017, Wu et al. and 
Ma et al. combined QEPAS technique with erbium-doped fiber amplifier 
(EDFA) to detect NH3, and the detection sensitivity (1σ) of 1.6 ppmv and 
481.4 ppbv, respectively, were achieved for an integration time of 1 sec 
[22,23]. However, the detection sensitivity is still insufficient to meet 
the requirements of atmospheric NH3 monitoring, and the utilization of 
EDFA complicated the QEPAS system and limited the ability of field 
application. In addition, several advanced QEPAS technologies have 
been developed to improve the detection sensitivity. In 2022, W. Ren 
et al. and H. Zeng et al. reported ultrasensitive doubly resonant QEPAS 
sensor and dual-comb QEPAS, respectively [24,25]. In 2023, W. Ren 
et al. developed a mid-infrared cavity-enhanced QEPAS sensor which is 
based on the doubly resonant photoacoustic effect, demonstrating 
highly sensitive photoacoustic excitation and high-resolution molecular 
spectroscopy. These methods also result in large systems and complex 
operations [26]. One possible solution is to select a mid-infrared laser 
which covers the stronger gas absorption lines as the excitation source 
for photoacoustic signals. Nevertheless, the 300-µm prong spacing of 
this standard QTF can block a portion of laser beam. The laser light on 
the prongs leads to periodical heating of the QTF surface and result in a 
significant increase in background noise. This phenomenon is more 
pronounced for some excitation sources with degraded beam profile 
such as interband cascade laser (ICL), quantum cascade lasers (QCLs) 
and terahertz (THz) lasers, impeding the optical coupling between the 
QEPAS spectrophone and these advanced excitation source. Hence the 
design and investigation of QTFs’ prong dimensions and geometry is 
requisite for the optimization of QEPAS-based sensing system. 

In this work, we demonstrate a QEPAS-based gas sensor for ambient 
NH3 detection, in which a novel custom QTF with resonance frequency 
of 9538 Hz and a quality factor of 10263 at atmospheric pressure in air is 
employed as acoustic transducer. The custom QTF is designed with 
hammer-shaped surface-grooved prong geometry and a large prong 
spacing of 800 µm, allowing the easier optical calibration operation 
compared with standard commercial QTF (300 µm). A QCL laser source 
emitting at 9.55 µm is exploited in the system without spatial or laser 
modal beam filters which provides a higher detection sensitivity and a 
simpler system structure. The assessment of the proposed QEPAS-based 
sensor performance is implemented by a continuous atmospheric NH3 
on-line monitoring, verifying the robustness and reliability of the sensor. 

2. Sensor design and characterization 

2.1. Selection of excitation wavelengths and optical sources 

Since the fundamental vibrational of molecules is more than two 
orders stronger in the mid-infrared (MIR) spectral region than in the 
near infrared (NIR), a higher detection sensitivity can be obtained with a 
QEPAS sensor operated in MIR spectral region. According to the 
HITRAN database, four fundamental vibrational modes (ν1, ν2, ν3, ν4) of 
the NH3 molecule are provided [27]. As demonstrated in Fig. 1, NH3 
molecule has the strong ν2 band and other hot band (2ν2-ν2) near 10 µm 
(1000 cm− 1) which is of great significance for trace NH3 detection in the 
infrared absorption spectra region due to the excellent line strengths 
compared with the other absorption bands. Taking into account the line 
strength and the absence of interference from other gas absorption, a 
NH3 absorption line located at 1046.4 cm− 1, with a line strength of 
3.648 × 10− 19 cm/mol, was selected as the target line. This absorption 
line belongs to the ν2 fundamental band of NH3 which is widely 
employed as a frequency standard for spectral calibration [28,29]. 

With the development of laser materials and the maturity of laser 
theory, the QCL laser has emerged as a highly versatile excitation source 
in the MIR spectral region for trace gas detection and environmental 
monitoring. In this study, a self-dependent compact QCL source 
(Healthyphoton, China, Model QC750-Touch™) with low current noise 
and temperature drift was selected for the sensing system. The QCL 
possess an integrated current and temperature control driver, and the 
temperature controller adopts non-PWM-type continuous current output 
control, greatly prolonging the service life of TEC devices. Additionally, 
a notable feature of the QCL is its maximum current soft clamping 
function, which prevents laser tube damage resulting from mishandling 
of high currents, ensuring the chip’s safety to the utmost extent. 

To target the NH3 absorption line, the QCL was coupled to a FTIR 
spectrometer (Thermo Scientific Model Nicolet iS50) to characterize the 
laser emitting wavelengths as shown in Fig. 2. The output wavelength 
can be tuned from 1044.3 cm− 1 to 1047.1 cm− 1, covering the targeted 
line at 1046.4 cm− 1 with a QCL temperature and current of 25.5 ◦C and 
608 mA which was also depicted as a dotted line. The wavelength tuning 
coefficients of the QCL was calculated as - 0.10496 cm− 1/. 

◦C and - 0.00892 cm− 1/mA by setting and changing the driving 
temperature and current, respectively. 

Fig. 1. NH3 absorbance spectra in the infrared region from 800 to7000 cm− 1 

according to the HITRAN database. 
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2.2. Design methodology of the hammer-shaped surface-grooved QTFs 

For the photoacoustic detection of gases with adsorption character-
istics, such as ammonia, mitigating the impact of gas adsorption on 
detection performance is crucial. One effective approach to achieve this 
is by minimizing the contact area of acoustoelectric transducers, such as 
QTF. Thus, it becomes essential to design the size and structure of the 
customized QTF carefully. The goal is to minimize its surface area while 
preserving its electrical parameters, including resonance frequency, 
quality factor, resistance value, and prong spacing, as well as charge 
collection efficiency. Consequently, the tuning fork can achieve optimal 
performance for ammonia detection. In this context, we present a novel 
tuning fork tailored specifically for atmospheric ammonia monitoring, 
meeting the aforementioned requirements. In principle, the QTF can be 
regarded as two vibratory prongs coupled with a supporting structure, 
and the prongs are joined at one base which are fixed to the supporting 
structure. When the laser beam is focused on the center of prongs to 
generate sound wave, the anti-symmetrical mode is dominant in the in- 
plane flexural vibration modes of QTF. To elastically describe the flex-
ural mode vibration using a one-dimensional model, the free vibrating 
end of QTF prong can be specified by the following Euler-Bernoulli 
equation [30–32]: 

EI
∂4y(x, t)

∂x4 + ρA
∂4y(x, t)

∂t4 = 0 (1)  

where E = 0.72 × 1011 N/m2 and ρ = 2650 kg/m3 are the elastic Young 
modulus and density of the quartz material, respectively. I and A 
represent the rotational inertia and the cross sectional area of the QTF 
prong, t is the time, x and y are the longitudinal and crossed directions 
relative to the prong. The fundamental resonance frequency can be 
solved and expressed by: 

f =
1.1942πw
8

̅̅̅̅̅
12

√
l2

̅̅̅̅
E
ρ

√

∝
w
l2 (2)  

where w, l are the prong width and length, respectively. 
The ability of gas to efficiently relax the excess thermal energy 

dissipated through non-radiative relaxation process is dependent on the 
laser modulation frequency and the type of targeted gas. Hence it is 
crucial to ensure the condition τ < < 1/f is satisfied, enabling efficient 
gas excess energy relaxation. Here, τ and 1/f denote the molecular 
relaxation time and the laser modulation period, respectively [33–35]. 
Since the laser modulation frequency must match the oscillation 

frequency f of the QTF in QEPAS sensor, the f of the custom QTF can be 
decreased with a reduced ratio of w and l to produce a maximum 
acoustic signal according to the Eq. (2) [36–38]. Additionally, the 
quality factor (Q-factor) related to the energy dissipation mechanisms of 
the QTF prong is also a major parameter for the sensor performance. 
Considering that the primary loss mechanism composed of surrounding 
fluid damping and support loss (which can be neglected in the funda-
mental mode) is strongly related to the geometric parameters of QTF 
prong, the Q-factor can be specified by [39–41]: 

Q =
Qv

1 + QvbPc∝
wt
l

(3)  

where Qv is the Q-factor of QTF in vacuum, P is the gas pressure, b and c 
are the special parameters relevant to the QTF dimensions and sur-
rounding fluid viscosity, respectively. 

To propose a novel QTF for the application of NH3 detection, two 
design requirements must be met: (1) reduce the resonance frequency f 
while maintaining a high Q-factor to guarantee the QEPAS response in 
NH3 gas; (2) increase the prong spacing to facilitate the optical align-
ment and improve the signal-to-noise ratio (SNR). In view of the V-T 
relaxation time of NH3 which is in the order of ~0.4 μs, the resonance 
frequency f of QTF is adopted as 9.5 kHz. Due to the sharp edge profiles 
of quartz crystal cannot be guaranteed with a chemical etching of t ˃ 
0.1 mm, a thickness t is fixed at 0.25 mm. According to the equation (4) 
and (5), the ratio relationship between w and l needs to be considered 
and selected comprehensively to obtain a suitable f and Q-factor. To 
ensure the effective vibration of the QTF prongs, it is necessary to satisfy 
the condition t/w > 0.1. Therefore, a 2-mm width w and 9.4-mm prong 
length l was determined and used. An appropriate prong spacing is 
capable of providing excellent acousto-electric conversion efficiency, 
and reducing background noise when a MIR QCL is utilized. Hence a 
prong spacing of 800 µm is chosen to match the spot size of the MIR 
excitation source. 

The resonance frequency of QTF is determined by the crystal mate-
rial and the geometry shape. When the prong size of the QTF is deter-
mined, the sensing property of the QTF can be further improved through 
a modification of prong geometry [40–43]. In this work, a 

Fig. 2. The output wavelength of the QCL as a function of driving current from 
500 mA to 670 mA at different temperature. 

Fig. 3. Schematic of the geometrical dimensions of the hammer-shaped sur-
face-grooved QTF. The inset shows the photograph of the novel QTF. 
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hammer-shaped QTF prong is designed and adopted, as shown in Fig. 3. 
This geometry provides an optimized stress field distribution, further 
enhancing the piezoelectric coupling efficiency. Moreover, based on the 
simulated result of COMSOL Multiphysics software in Ref 41, the in-
tensity distribution of the stress filed along the QTF prong reaches the 
maximum when ws/w = 0.7 mm. Although a lower frequency value can 
be achieved by reducing the ratio ws/w, it may compromise the me-
chanical stability of the QTF due to the low moment of inertia [38]. 
Therefore, ws is selected as 1.4 mm. Furthermore, a rectangular grooved 
modification with an area of 1.8 × 7 mm and a depth of 0.05 mm is 
applied to each surface of QTF prong to improve the piezoelectric cur-
rent and enhance piezoelectric effect without obvious negative effects 
on the Q-factor. 

2.3. Experiment setup of QEPAS sensor system 

A QEPAS sensor system based on a hammer-shaped surface-grooved 
QTF and a CW MIR QCL is demonstrated for NH3 detection. The 
experimental setup is schematically depicted in Fig. 4. The CW QCL 
(Healthyphoton, China, Model QC750-Touch™) emitting at 9.55 µm is 
chosen as the excitation source to generate the QEPAS signals. An on- 
screen laser driver integrated with a cooling unit, a TEC temperature 
controller and a low noise current driver was employed to control the 
temperature and current of the QCL. The laser beam was focused into a 
~0.25 mm2 circular spot at the focal point by means of a 50-mm focal 
length plano-convex ZnSe lens, and can be directed easily through the 
dual tube spectrophone. The acoustic detection module (ADM) consists 
of the spectrophone configuration and two 25.4-mm diameter ZnSe 
windows with 98 % transmissivity efficiency, and has an internal vol-
ume of 70 mm3 capable of gas exchange. A power meter is placed behind 
the ADM to calibrate the beam and monitor the transmitted optical 
power. 

In order to achieve sensitive NH3 detection, the 2f-wavelength 
modulation spectroscopy (WMS) approach is employed. A dual-channel 
function generator is utilized to generate a f/2 sinusoidal modulation 
signal and a ramp scanning signal, which are combined to dither the 
QCL wavelength with an electrical adder. Then the piezoelectric signal 
from the custom QTF is amplified by a trans-impedance preamplifier and 
demodulated by a lock-in amplifier (Stanford Research Systems, Model 
SR830) in the 2 f mode. The LIA time constant and slope filter are set to 
300 ms and 12 dB/octave, respectively, corresponding to a bandwidth 
of 0.833 Hz. A personal computer (PC) is used to collect and analyze the 
QEPAS data via a LabVIEW routine. 

A commercially available gas dilution system (Environics Inc. Model 
EN4040) is utilized to generate a mixture of NH3/N2 gas at desired 
concentrations. To regulate the gas flow rate to the set point, a mass flow 
meter combined with a needle valve (Not shown in the figure) is placed 
downstream. The pressure inside the ADM is controlled and maintained 
at 700 torr via a pressure controller (MKS Instruments Inc. Model 
649B13TS1M22 M) and a vacuum pump. A Nafion humidifier was 
inserted inline to keep the water concentration entering the QEPAS cell 
at 1.5 % to eliminate the influence of environmental water vapor 
changes on the experimental system. Nevertheless, the NH3 molecule is 
readily adsorbed to surfaces resulted from its viscosity and interaction 
with the ADM surface, preventing the accurate determination of the NH3 
concentration in the QEPAS system. To mitigate this issue, a heater is 
tightly attached to the walls of the ADM. The purpose of the heater is to 
eliminate the adsorption and desorption effects arising from the polar-
ized molecular of NH3. This is due to the fact that a rise of temperature 
increases the thermal motion of NH3 gas molecules, increasing the gas 
desorption rate and reducing the total adsorption of gas. Experimental 
results show that with the increase of temperature, the response time of 
the system will be significantly shortened. Compared to the room tem-
perature, the operating temperature of 50 ◦C can reduce the response 
time by 65 %. Continuing to increase the temperature may further 
inhibit the adsorption of NH3, but the high temperature puts forward 
new requirements for the heat resistance of the device and requires the 
addition of insulation devices. Hence, we finally set the operating tem-
perature of the system at 50 ◦C. In addition, a large gas flow rate of 260 
sccm is adopted to reduce the NH3 molecular adsorbability and accel-
erate the gas exchange times. 

3. Optimization and assessment of sensor performance 

3.1. Parameter optimization 

In order to improve the detection performance, it is necessary to 
optimize the parameters of the spectrophone configuration. Since the 
laser beam must be focused at the center of the prong spacing to vibrate 
the QTF prongs effectively, the focusing position of the laser beam has 
been investigated and determined as shown in Fig. 5(a). The QTF sym-
metry axis is vertically scanned by the laser beam from the top to bottom 
for acquiring the optimum focused spot position. The QEPAS signals are 
normalized to the maximum value and the optimum laser focus position 
is determined as 2 mm from the prong top which is depicted in Fig. 5(b). 
In this work, a 50-ppm NH3:N2 mixture was selected as target gas. 

In most QEPAS-based trace gas sensors, an on-beam spectrophone 
configuration is commonly employed to achieve a higher signal-noise- 
rate (SNR) gain [44–46]. In this configuration, the AmR consists of 
two identical metallic tubes positioned symmetrically and aligned 
perpendicular to the QTF plane, with the QTF inserted at the center. To 
enhance the acoustic coupling efficiency, the dimension parameters 

Fig. 4. Schematic of the developed QEPAS-based NH3 trace gas sensing system. 
ADM: acoustic detection module; PM: power meter; FG: function generator; 
LIA: lock-in amplifier. 

Fig. 5. (a) Diagram of the QTF prongs deformation vibrating in the funda-
mental flexural mode via COMSOL MultiPhysics. The spot position represents 
the starting point of scanning. (b) Normalized QEPAS signals as a function of 
the position along the vertical symmetry axis of the QTF. 
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(inner diameter and tube length) are tested and optimized at atmo-
spheric pressure. Since the inner diameter (ID) d is related with the 
prong spacing, eight different AmRs with d = 1 mm, 1.25 mm, 1.35 mm, 
1.5 mm, 1.65 mm, 1.75 mm, 1.85 mm and 2.05 mm but with the same 
length l = 12 mm have been tested. According to the related theoretical 
and experimental investigation, the length of each tube l is associated 
with the acoustic wavelength λ at the resonance frequency f of the QTF 
under the assumption that the QTF-tube distance is zero. However, with 
the insertion of QTF distorting the acoustic resonance in the AmR, the 
optimum AMR length (2 l) is λ/2 < 2 l < λ, resulting in the optimal l of 
each tube between λ/4 and λ/2. In this work, the acoustic wavelength λ 
for the custom 9.5-kHz QTF is 35.6 mm, hence a series of tubes with 
different lengths (8.9 mm < l < 17.8 mm) were measured. Fig. 6 dem-
onstrates the optimum geometric parameters of the AmRs is 
d = 1.75 mm and l = 13 mm with a QTF-tube distance of 200 µm, which 
provides a SNR gain factor of 37. 

Generally, the photoacoustic signal in QEPAS-based sensors can be 
described by: S=CP0α(p)ε(p)Q(p), where C is the system constant, P0 is 
the optical power, p is the gas pressure, α, ε, Q, is the peak intensity of 
the 2 f absorption spectrum, optoacoustic transduction efficiency and 
QTF Q-factor, respectively. Since the α depends on the modulation depth 
of the laser current, the laser modulation depth must match the p- 
dependent absorption linewidth. As depicted in Fig. 7, the modulation 
voltages in the ADM are measured and optimized under different gas 
pressures to achieve the maximum QEPAS signal using a 1-ppm NH3/N2 
calibration gas. The highest 2 f signal is observed at 300 torr with a 
modulation voltage of 180 mV, which is 40 % higher than the QEPAS 
signal obtained at 700-torr with a 300-mV voltage modulation depth. 

For the NH3 detection sensing system, a large gas flow rate can retard 
the adsorption-desorption effect and reduce the gas exchange time in the 
ADM, but may cause an increase in the noise level [47]. Therefore, the 
dependence of the 1σ noise level on different gas flow rate from 20 sccm 
to 400 sccm is demonstrated with the optimum AmR parameters as 
shown in Fig. 8. An obvious increase of noise is observed when the gas 
flow rate up to 280 sccm, which can be attributed to unwanted prong 
vibration. Hence a flow rate of 260 sccm is selected for the sensor 
operation. 

Based on the measured noise level, a MDL of 1.3 ppb at 300 torr and 
2.2 ppb at 700 torr is obtained at 80-mW optical power. The following 
works are implemented under the atmospheric pressure of 700 torr since 
the pressure controller can be removed, simplifying the sensing system. 
Consequently, a normalized noise equivalent absorption (NNEA) coef-
ficient for NH3 of 1.4 × 10− 8 W cm− 1/√Hz is obtained at 700 torr. 

3.2. Performance characteristics 

To assess the performance of the QEPAS-based NH3 sensor, the sys-
tem was operated with the optimum parameters under atmospheric 
pressure. Various concentration levels of NH3 from 100 ppb to 10 ppm 

Fig. 6. QEPAS peak signals obtained with different (a) inner diameter and (b) length of each tube.  

Fig. 7. 2f QEPAS peak signal of NH3 spectra measured at different gas pressures 
and laser voltage modulation depths. All measurements were operated using a 
1-ppm NH3 mixture in N2. 

Fig. 8. Dependence of the noise level measured for pure N2 as a function of the 
gas flow rate in the range of 20–400 sccm at atmospheric pressure. 

S. Li et al.                                                                                                                                                                                                                                        



Photoacoustics 33 (2023) 100557

6

generated by the gas dilution system are filled into the ADM for char-
acterizing the linearity of this sensor response to the NH3 concentration. 
For each concentration, more than 200 QEPAS signals are measured 
with an acquisition time of 1 s to determine the average value as the 
final signal value. From Fig. 9, an excellent linear response of the QEPAS 
peak signals and the NH3 concentration is indicated and confirmed. 

The performance of the QEPAS-based sensor is further evaluated in 
terms of limits of detection of NH3 trace gas through Allan variance 
analysis which is a measurement index of system stability by quantifying 
noise. As shown in Fig. 10, the long-term stability and the sensitivity of 
the system are demonstrated with a 1-s acquisition time when the ADM 
is filled with pure N2 at atmospheric pressure. In addition, the wave-
length of the QCL laser was locked at 1046.4 cm− 1, corresponding to the 
NH3 absorption peak. The deviation curve almost follows a 1/√t 
dependence for time sequences ranging from 1 s to 52 s, revealing a 
white noise behavior, where t is the lock-in integration time. And the 
Allan–werle deviation experiences a sensitivity drift following a √t 
dependence when the averaging time exceeds 80 s. The calibration 
curve of the QEPAS sensor is used to convert the 1σ-noise voltages into 
NH3 concentrations. Based on the Allan derivation curves, the MDL can 
be further lowered to 90 ppt with an averaging time of 52 s 

In order to verify the sensor performance in practical application, a 
continuous monitoring of atmospheric NH3 concentration was imple-
mented from September 7th to 11th, 2022, inside a laboratory located in 
the Shaw Amenities Building on the Shanxi University campus in 
Taiyuan, China. To collect atmospheric air samples, an external dia-
phragm pump was utilized to draw air from the outdoors. A 3 µm 
micropore PTFE membrane was incorporated to prevent any potential 
adverse effects caused by dust or soot particles. The results of real-time 
continuous monitoring of atmospheric NH3 with an acquisition time of 
1 sond at atmospheric pressure are depicted in Fig. 11. A periodic trend 
in NH3 concentration is observed from the measured results. Among 
them, the measured NH3 concentration has a morning spike around 
07:00–10:00 each day, and decreased until reaching the minimum at 
17:00. The diurnal variations of urban NH3 can be attributed to 
nonagricultural sources caused by human activities, meteorology, and 
chemical reactions, particularly the vehicular emissions [48]. For 
example, on colder mornings, more NH3 is produced in vehicle exhaust 
due to the higher frequency of fuel-rich combustion, favoring reduction 
processes on the catalyst surface, hence promotes the significant con-
version of NOx to NH3 rather than N2. In addition, the low NH3 con-
centration may be due to the relatively high mixing layer height in the 
afternoon, resulting in a better mixing of NH3 and air. And the meteo-
rological conditions after 16:00 are more conducive to the reaction of 

NH3 with acidic precursors and enhance the isotope exchange between 
NH3 and aerosol NH4

+. 

4. Conclusion 

A robust, compact and highly sensitive prototype of a QEPAS-based 
sensor for NH3 real-line monitoring is realized and demonstrated by 
combining a novel QTF with a mid-infrared QCL. The QTF, modified 
with a hammer-shaped prong geometry and surface grooves, is first 
customized for NH3 detection which results in a high-quality factor of 
10263 at atmospheric pressure in air. The reduced QTF resonance fre-
quency of 9.5 kHz perfectly matches the vibration-translation relaxation 
of NH3, providing a more sensitive sensing performance. In addition, the 
0.8-mm prong spacing permits the QEPAS operation with a MIR QCL 
which can pass easily through the ADM without spatial filters. The linear 
response of the NH3 sensor was exhibited and a minimum detection limit 
of 2.2 ppb with 300-ms integration time is obtained, corresponding to a 
NNEA of 1.4 × 10− 8 W cm− 1 Hz− 1/2, which is the best value reported so 
far for NH3 QEPAS sensors. Continuous monitoring of atmospheric NH3 
for five days was demonstrated, validating the performance the QEPAS- 
based NH3 sensing system. As part of future work, a design incorporating 

Fig. 9. The linear relationship between 2f signal amplitude and NH3 
concentration. 

Fig. 10. Allan-werle deviation as a function of the averaging time.  

Fig. 11. Continuous five-day monitoring of environmental NH3 concentrations 
by the proposed sensor system. 
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a 3D-printed Teflon-based Acoustic Detection Module (ADM) will be 
developed to eliminate the adsorption− desorption effect of NH3. 
Furthermore, the system holds promise for non-invasive breath analysis 
diagnostics and ammonia monitoring in agriculture and animal hus-
bandry, which are potential areas for its application. 
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