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A B S T R A C T   

We report here on a study of the generation of Laser-Induced Periodic Surface Structures (LIPSS) on quartz upon 
irradiation with linearly polarized femto-second laser pulses (pulse duration τ = 200 fs and central wavelength λ 
= 1030 nm). Two different regimes of LIPSS were observed, Low-Spatial-Frequency-LIPSS (LSFL) and High- 
Spatial-Frequency-LIPSS (HSFL), characterized by different spatial periods and orientations. The formation of 
these two types of structures was investigated by varying the laser fluence, the number of laser pulses and the 
laser repetition rate. Once established how these parameters affect the generation of LIPSS, extended HSFL 
patterns (25 × 25 mm2) were realized, and their wettability was compared to that of pristine quartz. Contact 
angle measurements showed that HSFL textured quartz exhibits a super-hydrophilic behaviour, with a measured 
contact angle equal to 7.6◦, with respect to pristine quartz which results simply hydrophilic and shows a contact 
angle equal to 41.2◦.   

1. Introduction 

Silicon dioxide, commonly known as quartz, is the most abundant 
mineral on earth. Its most relevant properties are chemical stability and 
piezoelectricity [1]; these two characteristics make quartz an excellent 
material for sensing technology devices such as Quartz-Tuning-Forks 
(QTF) [2] or Quartz-Crystal-Microbalance (QCM) [3]. QTFs trans
ducers are employed in Quartz-Enhanced-Photoacoustic-Spectroscopy 
(QEPAS) [4] or Light-Induced-Thermoelastic-Spectroscopy (LITES) 
[5,6], while QCMs are used typically as electrochemical sensors [7]. 
These applications could greatly benefit from the surface functionali
zation of quartz in order to tailor the properties of the employed quartz- 
based devices. One of the most advanced and reliable techniques for 
texturing and functionalization of solid surfaces is Ultra-Short-Pulsed- 
Laser (USPL) processing. This method has been consistently used for 
changing the optical [8], electrical [9] and mechanical [10–13] prop
erties of materials. The leading edge of USPL surface functionalization is 
represented by texturing the surfaces with Laser-Induced-Periodic- 
Surface-Structures (LIPSS). LIPSS are highly ordered and periodic 

structures which most often manifest themselves in the form of ripples 
whenever the target material is irradiated by linearly polarized sub- 
nanosecond laser pulses with fluence close to the material damage 
threshold [14]. Their orientation is dependent on the laser beam po
larization direction. Two distinct types of LIPSS are usually observed: 
Low-Spatial-Frequency LIPSS (LSFL) and High-Spatial-Frequency LIPSS 
(HSFL). LSFL present spatial periods λ/2 < ΛLSFL < λ and their orien
tation is perpendicular to laser beam polarization for most materials 
[15,16], with some exceptions for very large band gap dielectrics, where 
they were found parallel to the beam polarization [17]. HSFL spatial 
periods are smaller than half the irradiation wavelength (ΛHSFL < λ/2) 
and have been observed predominantly on transparent materials, with 
orientation typically perpendicular [17,18] and sometimes parallel to 
the polarization [19]. Most works investigating LIPSS applications are 
focused on metals (such as gold, aluminium, steel, platinum, titanium, 
etc.) and semiconductors for structural colour generation [20], alter
ation of wetting properties [21], tribology [22] and support for cellular 
growth on textured surfaces [14,23]. One relevant application on a 
dielectric material is the enhancement of optical absorption of diamond 
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with LIPSS texturing [9,24]. LIPSS formation has been investigated for 
quartz [17], but to our knowledge, there are no studies in literature 
regarding possible applications of quartz surfaces functionalized with 
LIPSS. 

In this work, we evaluate how experimental parameters such as laser 
fluence F, number of laser pulses N and repetition rate ν affect the 
generation of LIPSS on quartz surfaces. The possibility of producing 
LIPSS patterns over extended areas (up to 25 mm2) was also investi
gated. Such extended patterns were then verified to have an impact on 
the material wettability, making LIPSS-textured quartz a super- 
hydrophilic material and a reliable alternative for humidity sensing 
applications [25]. 

2. Materials and experimental setup 

Double polished z-cut quartz wafers, produced by Nano Quartz 
Wafer GmbH, were employed. The wafers had an area of 25.4 x25.4 
mm2, with a thickness of 400 ± 50 μm and a surface roughness Ra of 3 
nm. 

The texturing apparatus employed in this work is schematically 
represented in Fig. 1. 

A Pharos SP 1.5 from Light Conversion was employed as laser sys
tem. It radiates an almost diffraction limited beam (M2 = 1.3, certified 
by the producing company) characterized by pulses with tunable 
duration from 190 fs to 10 ps, with a central wavelength at 1030 nm, a 
maximum pulse energy EP of 1.5 mJ and a maximum average power of 6 
W. The pulse repetition rate ν is tunable from single pulse to 1 MHz. In 
our setup, the linearly polarized beam passed through a half-wave plate 
and a polarizer; the coupling of these two optics allowed the rotation of 
the laser polarization and the fine tuning of the laser power. The linear 
polarizer transmitted the P component of polarization. The pulse dura
tion was set at 200 fs. The laser beam was directed to a PC-controlled 
galvo scanner (SCANLAB intelliSCANSE 14) equipped with a 100 mm- 
F-theta lens. The upper surface of the quartz sample was placed on the 
focal plane of the F-theta lens. The estimated beam waist w in air was 
12.5 μm. 

The influence of the laser irradiation conditions on the LIPSS 
morphology was investigated by producing a series of round spots and 
varying the following laser parameters, i.e., laser fluence F, repetition 
rate ν, number of pulses N and laser polarization direction. 

Extended LIPSS patterns were then realized based on the results from 
the single spot experiments. Such patterns were dependent also by the 
scanning speed V of the laser beam and the hatch distance h between 
scanning tracks, following two irradiation schemes as sketched in Fig. 2. 

For such patterns, the laser fluence was set at F = 5 J/cm2 and the 
number of pulses per spot at N = 10, calculated as Npps = d ν/V, where 
d is the beam diameter, ν the laser repetition rate and V is the scanning 
speed. In both patterns the scanning speed was perpendicular to the 

polarization direction. This value of F was chosen since it is slightly 
lower than the laser ablation threshold at Npps = 10 [26]. Being d equal 
to 25 μm, ν was set at 0.6 kHz and V = 1.5 mm/s. These patterns 
extended over a square area of 25 mm2. 

The characterization of each textured sample was performed using 
two microscopes: an optical microscope (Nikon Eclipse E600) and a 
Scanning-Electron-Microscope (Zeiss Mod Sigma). Before SEM imaging 
all samples were sonicated in ethanol and then metallized through 
evaporation of gold. This last process is required because SEM imaging 
of dielectrics materials is difficult and affected by poor resolution. The 
SEM acquired LIPSS images that were subsequently processed by means 
of the Fourier transform (FT) using the Gwyddion software, to determine 
the spatial period of the laser-induced structures. The wetting behaviour 
of the LIPSS-textured patterns was investigated by performing contact 
angle measurements using a digital goniometer. Such device consisted of 
a Dino-lite portable microscope and a cold light lamp for backlighting 
the droplet. 3 µL droplets were deposited on the patterns by means of a 
micropipette (GILSON Pipetman). The superficial resistivity of the LIPSS 
patterns were directly measured using a digital multimeter after having 
exposed such patterned samples in a vapour chamber, consisting of a 
transparent plastic box with one entrance for the vapour generator 
(ARCOMA Biemmedue) and another one for a humidity sensor (RS PRO) 
probe. 

3. Results and discussion 

3.1. LIPSS period dependence on laser fluence 

At first, the variation of LIPSS type and period as a function of the 
laser fluence F was evaluated. Once set the number of pulses and the 
repetition rate, respectively, at N = 10 and ν = 6 KHz, F was increased 
from 5 to 10 J/cm2. These parameters were chosen, from a previous 
work [26], since they were expected to be close enough to the ablation 
threshold, which is a prerequisite for obtaining LIPSS. In Fig. 3, SEM 
images of five spots realized at increasing F values are shown. 

At the lowest fluence values F = 5 J/cm2 and 5.5 J/cm2, HSFL were 
observed, with orientation perpendicular to the laser beam polarization. 
At F = 6.5 J/cm2, LSFL can be observed in the center of the irradiated 
spot and parallel to laser beam polarization (POL B). For higher fluences 
(8.5 J/cm2 and 10 J/cm2), LSFL become more extended and regular, 
especially at the fluence of 10 J/cm2. Another series of spots was real
ized with the same working parameters of Fig. 2 but rotating the po
larization of 90◦ (POL A). Again, the HSFLs arranged themselves 
perpendicular to the polarization direction and the LSFLs were found 
parallel to the polarization. In Fig. 4 LIPSS periods are reported as 
function of the laser fluences for both series of spots realized with 
orthogonal polarizations. 

Fig. 4 clearly shows that around F = 6 J/cm2 there is a transition 

Fig. 1. Schematic design of the texturing setup.  
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from HSFL to LSFL, for both incident polarization directions. Within 
each regime, the period values were comparable, inside the uncertainty 
interval, for both different laser fluence F and polarization, so the data 
were averaged. The following values were obtained: ΛHSFL = 332 ± 18 
nm and ΛLSFL = 791 ± 29 nm. Both these average periods are in 
agreement with the results found in literature for quartz [17,27]. 

A possible dependence of the LIPSS orientation on the crystal lattice 
has been also investigated. The samples employed in this work are z-cut 
α-quartz. α-quartz belongs to the hexagonal trigonal crystal class (also 
referred to as 3 2 class) which has a three-fold rotational symmetry 
(120◦) around the c-axis of the crystal. Z-cut samples have their surfaces 
orthogonal to the c-axis, so their lattice is symmetric for 120◦ rotations. 
In order to investigate any influence of the crystal lattice orientation on 
the LIPSS orientation, additional experiments were performed produc
ing LSFL with F = 10 J/cm2 and at N = 10 and keeping the polarization 

direction fixed (POL A) while rotating the sample at steps of 30◦. For 
every rotation angle LSFL were found to remain parallel to the polari
zation direction, thus it is possible to conclude that, for z-cut quartz, 
LIPSS orientation is not dependent on the crystal lattice orientation. 

3.2. LIPSS period dependence on the number of pulses 

In Fig. 5, SEM images of LIPSS spots realized at F = 6.5 J/cm2, ν = 6 
kHz and laser pulses varying from N = 10 to N = 100 are shown. 

Fig. 5(a) shows LSFL obtained, as expected, with F = 6.5 J/cm2 and 
N = 10. Increasing N from 10 to 20 (Fig. 5(b)), the LSFL region increases 
in size (70 ± 1 % of total crater area) and HSFL appear around the 
central region. At N = 50, the total accumulated fluence is enough to 
cause ablation, and so for this reason HSFL are not formed, but LIPSS do 
still appear at the bottom of the ablated crater while at N = 100 the 

Fig. 2. Laser scanning patterns used for LIPSS texturing of quartz with POL A (a) and POL B (b). V is the laser beam scanning speed and h the hatch distance between 
two scanning tracks. In the bottom left corner of each panel the wafer crystalline axes orientations is shown. 

Fig. 3. SEM images of LIPSS spots on quartz surface, after irradiation with N = 10 linearly polarized laser pulses (red arrow in (a), referred to as POL B), at increasing 
laser fluences from F = 5.0 J/cm2 (a) to F = 10 J/cm2 (e). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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ablated crater shows no LIPSS anymore. In Fig. 6 the LIPSS periods of the 
spots in Fig. 5 are plotted as a function of the number of pulses N. 

HSFL manifested only at N = 20, with a period of 402 ± 60 nm, at the 
border of the crater. In this region the accumulated energy (relative to 
the tails of the gaussian profile of the laser beam), is sufficient only to 

generate HSFL, while LFSL are formed in the centre of the crater. Both 
HSFL and LSFL periods measured values are still comparable with those 
found for quartz in other works[17,27]. 

Fig. 4. LIPSS periods on quartz as function of the laser fluence F for POL A (a) and for POL B (b). Periods were measured as the average of the most frequent values 
deduced from the 2D-Fourier analysis of each spot and the uncertainties represent the related standard deviation (N = 10, ν = 6 kHz). 

Fig. 5. SEM images of LIPSS spots on quartz surface after irradiation with F = 6.5 J/cm2 at ν = 6 kHz linearly polarized (POL A; red arrow in (a)) pulses going from N 
= 10 (a) to N = 100 (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.3. LIPSS period dependence on repetition rate 

In Fig. 7 the LIPSS periods for both LSFL and HSFL are reported as a 
function of the repetition rate ν, having set the number of pulses at N =
10 and the laser fluence at two different values in order to produce either 
HSFL or LSFL. 

For the LSFL the laser fluence was fixed at F = 8.5 J/cm2 while ν was 
varied over three values: 0.6, 6 and 60 kHz. No trend of the LSFL period 
ΛLSFL with the repetition rate is evident. For the HSFL the laser fluence 
was fixed at F = 5.5. J/cm2, varying the repetition rate over the same 
values. As for LSFL, there is no clear influence of ν on the period of the 
HSFL ΛHSFL. 

3.4. Extended LIPSS patterns on quartz for wettability applications 

LIPSS patterns were realized over extended areas, up to dimension of 
25 mm2. In Fig. 8 two pictures of two such patterns are shown. 

In Fig. 8(a) and 8(b) the pattern was realized by vertically scanning 
(horizontally in Fig. 8(b)) the selected area with lateral distance of h =
10 μm between the laser tracks, resulting in a horizontal (vertical in 
Fig. 8(a)) overlap of about 50 % between adjacent laser tracks. HSFL 
were obtained parallel to the scanning direction, being the laser polar
ization orthogonal to it. The periods ΛHSFL measured were 440.8 ± 6.5 

nm for the vertical scanned area, Fig. 9(a), and 445.2 ± 5.4 nm for the 
horizontal scanned area, Fig. 9(b), respectively. These two values are 
larger than those obtained from data in Fig. 4. This increase in period 
could be ascribed to an effective larger number of pulses per spot, caused 
by the overlap between adjacent tracks. These two areas were used to 
investigate the effect of LIPSS on quartz wettability. 

Pristine quartz is a hydrophilic material; in Fig. 9 the image of a 3 µL 
water droplet deposited on a non-textured quartz sample is shown. 

The contact angle CA, evaluated over four droplets, was found equal 
to θav = 41.2 ± 0.3◦, confirming the quartz hydrophilic behaviour. In 
Fig. 10 the image of a droplet of 3 µL on LIPSS textured areas is shown. 

The CA is found to be equal to 7.6◦ which is below 10◦, which is the 
threshold CA value between hydrophilic and super hydrophilic behav
iour [28]. The change in the material wetting behaviour was attributed 
to change in surface topography (LIPSS) which suggests that Wenzel 
state of wetting. Any chemical modification influence on the wetting 
behaviour is considered negligible since samples were textured in 
ambient air and that quartz is very chemically stable[29]. 

These two scanning strategies were chosen in order to evaluate any 
influence of the crystalline orientation on the LIPSS generation. As 
stated before, since both HSFL periods and the wettability results are 
ultimately comparable for the two scanning strategies, it is safe to as
sume no influence crystalline orientation on the LIPSS formation. 

Superficial resistivity measurements [30] were performed in order to 
evaluate possible sensing applications of these super-hydrophilic LIPSS 
patterns. These measurements were performed using a quartz wafer 
having two test areas both of 25 mm2: the first consisted in a continuous 
LIPSS pattern and second was pristine quartz. The sample was kept in 
the chamber up until the vapour concentration inside reached the 
saturation value. The sample was then taken out from the chamber and a 
resistivity measurement was carried out using the probes of a digital 
multimeter placed at opposite angles of the LIPSS patterned area and of 
the untextured area. Being quartz an insulant material, the multimeter 
would measure the resistivity through the water deposited on the sample 
surface. An infinite resistance value was measured on the untextured 
area: this is probably due to the fact that on the pristine quartz water is 
deposited in the form of non-adjacent droplets. The textured area, 
instead, showed a resistivity value of 5.5 ± 0.1 MΩ, suggesting that the 
enhancement of hydrophilicity of textured quartzfacilitates the deposi
tion of water on the target surface. The texturing approach is potentially 
cheaper and faster since it does not require any chemical treatment or 
any addition of complex films to the sensing quartz element[25]. 

4. Conclusion 

In this work, we investigated the parameter space of LIPSS genera
tion on quartz crystal surfaces. The LIPSS formation was evaluated as a 
function of the laser fluence F, the number of laser pulses N and laser 
pulse repetition rate ν. The LIPSS orientation was always found parallel 
to polarization for LSFL and perpendicular for HSFL. This remained true 
whatever the polarization direction, thus excluding any influence on the 
crystal structure on LIPSS orientation. The average values of LSFL and 
HSFL periods were found to be in good agreement with the results found 
in literature for quartz. It was also determined that the periods are not 
influenced by the repetition rate. 

Finally extended LIPSS patterns, in HSFL regime, were realized over 
areas of 25 mm2 and were found to greatly enhance the hydrophilicity of 
quartz. This was verified through contact angle measurements, which 
show a decrease of the average contact angle from 41.2◦ to 7.6◦, indi
cating a transition from hydrophilicity to super-hydrophilicity of the 
quartz surface. This result opens the way to the application of to quartz 
crystals for humidity sensing, possibly improving and simplifying the 
design of such devices, which as of today employ QCM integrated with 
active layers upon quartz substrates [25]. 

Fig. 6. – LIPSS periods in dependence on the number of pulses at F = 6.5 J/cm2 

and ν = 6 kHz. 

Fig. 7. LIPSS periods in dependence on the repetition rate for two different 
values of fluence (N = 10). 
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