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A B S T R A C T   

In this work, we report on the novel employment of lithium niobate tuning forks as acoustic transducers in 
photoacoustic spectroscopy for gas sensing. The lithium niobate tuning fork (LiNTF) exhibits a fundamental 
resonance frequency of 39196.6 Hz and a quality factor Q = 5900 at atmospheric pressure. The possibility to 
operate the LiNTF as a photoacoustic wave detector was demonstrated targeting a water vapor absorption line 
falling at 7181.14 cm− 1 (1.39 µm). A noise equivalent concentration of 2 ppm was reached with a signal inte-
gration time of 20 s. These preliminary results open the path towards integrated photonic devices for gas sensing 
with LiNTF-based detectors on lithium niobate platforms.   

In the last couple of decades, lithium niobate (LiN) has arisen as one 
of the most employed materials in the integrated photonics field 
exploiting its strong electro-optic, acousto-optic and nonlinear optical 
properties [1,2] combined with a high refractive index, stable physical 
and chemical properties and a wide transparency spectral window (0.4 – 
5 µm) [3,4]. These features boosted a rapid development of LiN on 
insulator technology, consisting of LiN thin films bonded through a 
buried oxide layer to a LiN or silicon substrate, allowing the realization 
of basic structures, such as optical waveguides and resonant cavities [4], 
as well as the integration of LiN acousto-optic modulators based on a 
racetrack resonator [5], and electro-optic modulators based on 
Mach-Zender interferometers with integrated electrodes, which have 
been extensively developed throughout the last twenty years [6–8]. 
Because of its large electromechanical coupling coefficient, LiN has been 
also widely used for the development of various piezoelectric devices, 
including tuning forks (TFs), filters, transducers, actuators, and sensors 
[9,10]. For example, LiN tuning forks (LiNTFs) have already been 
largely employed as viscosity and density sensors for fluid properties 
measurements [11–14]. Moreover, it is well known that TFs can be used 
as sound wave detectors. This application created a perfect breeding 
ground in Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) for 
gas sensing. In QEPAS, a quartz tuning fork (QTF) is employed for 
detecting weak sound waves generated via photoacoustic effect within a 
gas sample as a consequence of non-radiative energy relaxation induced 
by infrared modulated light absorption [15,16]. 

In this work we explore the possibility to employ a LiNTF as a 
piezoelectric transducer in photoacoustic spectroscopy for sound wave 
detection. For ease of reading, in the following the technique will be 
referred to as Lithium Niobate-enhanced Photoacoustic Spectroscopy 
(LiNPAS). The strain and the electric field distribution when the LiNTF is 
excited at its fundamental in-plane flexural mode are modelled with a 
Finite Element Analysis. Using the simulation results as reference, the 
LiNTF prototype is employed in a LiNPAS sensor for water vapor 
detection. 

As already demonstrated in QEPAS, the fundamental TF in-plane 
anti-symmetric flexural mode can be efficiently excited by focusing 
the laser beam through the TF prongs, close to the vibration antinode 
[17]. In this way, the prongs are put into oscillation by the acoustic wave 
generated via photoacoustic effect impacting on the internal surface of 
prongs. A finite element method (FEM) simulation of the LiNTF funda-
mental in-plane anti-symmetric flexural mode was performed using 
COMSOL Multiphysics. The geometry of the LiNTF roughly mimics the 
standard 32.7 kHz-QTF employed in a QEPAS sensor for the first time in 
2002 [18]. With respect to the quartz crystal, the effective piezoelectric 
coefficient d23 of 128◦ y-cut LiN, which is the only one involved in the 
excitation of the fundamental in-plane anti-symmetric flexural mode, is 
nearly 10 times higher than d11 of α-quartz (2–3 pC/N) [14,19]. More-
over, LiN has higher density and Young’s modulus (4650 kg/m3 and 145 
GPa, respectively) with respect to quartz (2660 kg/m3 and 72 GPa). The 
simulated LiNTF geometry is sketched in Fig. 1a: the prongs have a 
length of 3.18 mm, a width of 0.45 mm, and a thickness of 1.25 mm, 
with a spacing of 0.35 mm. 

The simulation of the mechanical behavior of the LiNTF was per-
formed employing the Solid Mechanics module. A resonance frequency 
f0 =39182.0 Hz was predicted by means of an eigenfrequency study and 
used as a reference value for the characterization of the frequency 
response of the LiNTF. Then, employing the Electrostatics module and 
coupling it to the Solid Mechanics one by means of the Piezoelectric 
Effect interface module, the following equations were solved by the FEM 
software within the LiNTF volume: 

E = − ∇V (1)  

∇ • D = ρV (2)  

D = ϵ0ϵLiNE+Ppze (3)  

where E, V, and D are the electric field, the electric potential, and the 
Maxwell displacement field, respectively, generated via piezoelectric 
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effect within the LiNTF, ρV is the volume density of piezoelectric charge, 
ϵLiN is the 128◦ y-cut LiN relative permittivity tensor, and Ppze is the 
piezoelectric polarization density field. The results of the simulation are 
shown in Fig. 1b-d. The strain field (Fig. 1b) is mainly localized on the 
internal lateral surface of the two prongs, close to the clamped end. The 
electric field (Fig. 1c) is spatially distributed along the front surface of TF 
prongs with its intensity decreasing moving away from their surface. 
The electric potential distribution on the TF surface is displayed in 
Fig. 1d, with the piezoelectric charge being distributed accordingly. 
Following the simulation results, a LiNTF was fabricated in collabora-
tion with TE Connectivity Ltd. on a 128◦ y-cut LiN wafer. Two pairs of 
gold electrodes, having the geometry depicted in Fig. 1a, are deposited 
on one of the LiNTF front surfaces to collect the generated piezoelectric 
charges. The electrode layout matches the polarity of the electric po-
tential as well as it covers surface zones where the electric potential 
reaches maximum intensity (Fig. 1a to be compared with Fig. 1d), in 
order to maximize the charge collection efficiency. 

The realized LiNTF was mounted as a photoacoustic detector in a 
LiNPAS sensor depicted in Fig. 2. 

As a proof-of-concept, four water vapor absorption lines in the 
7180.54–7190.00 cm− 1 wavenumber range [20] falling at 
7181.15 cm− 1, 7182.21 cm− 1, 7182.94 cm− 1 and 7185.60 cm− 1, 

Fig. 1. a) Geometry and gold pad scheme of the employed LiNTF; b) COMSOL simulation of the displacement of each prong when excited at the fundamental in- 
plane anti-symmetric flexural mode. The 128◦ y-cut was selected for the material. The strain field modulus distribution is represented in the colour scale bar. A 
resonance frequency of 39182.0 Hz is predicted; c) COMSOL simulation of the electric field generated within each prong via piezoelectric effect (blue arrows); d) 
COMSOL simulation of the electric potential generated within the TF via piezoelectric effect. 

Fig. 2. Schematic of the experimental apparatus. Black arrows represent elec-
tronic connections. TEC – ThermoElectric Cooler, LD – Laser Diode, LiNTF – 
Lithium Niobate Tuning Fork, ADM – Acoustic Detection Module, PM – 
Power Meter. 
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respectively, were targeted employing a Nanoplus laser diode (LD). The 
LD central emission wavelength was 1392 nm with an output power of 
10 mW. The light source was controlled by means of a Thorlabs 
LDC202C current driver and a Thorlabs TED200C temperature 
controller, operating it at T=30 ◦C. A lens having a 40 mm focal length 
was used to focus the laser beam between the prongs of the LiNTF, 
mounted in an acoustic detection module (ADM). All the measurements 
were carried out in static conditions with the ADM isolated from the 
environment and filled at atmospheric pressure with a gas sample of 
standard air, composed of 20% O2, 1.2% H2O and 78.8% N2. 

First, the LiNTF response in a frequency range containing the 
fundamental mode resonance was obtained for determining both the 
resonance frequency and the quality factor of the resonator. The laser 
emission wavelength was locked at the strongest H2O absorption line in 

the LD tuning range, located at 7181.15 cm− 1 with a linestrength of 1.53 
• 10− 20 cm/molecule [20]. The characterization was performed in 
wavelength modulation and first harmonic detection (WM-1 f): the LD 
current was sinusoidally modulated, and the LiNTF signal demodulated 
at the same excitation frequency by a lock-in amplifier (Zurich In-
struments MFLI). To reconstruct the LiNTF response curve, the LD cur-
rent modulation frequency was varied step-by-step in the range 
39150–39245 Hz. The frequency response of the LiNTF exhibits a reso-
nance close to the simulated fundamental mode and it is shown in Fig. 3 
(datapoints). 

A resonance frequency f0 =39196.6 Hz and a quality factor Q =5900 
were estimated performing a Lorentzian fit (red solid line in Fig. 3) of the 
datapoints, resulting in a good agreement with the resonance frequency 
predicted by the FEM model, with a discrepancy of 0.34‰. 

LiNPAS measurements were carried out in the wavelength modula-
tion and second harmonic detection (WM-2f) scheme [21]. Therefore, 
the laser driver current was modulated applying a sinewave at half of the 
LiNTF resonance frequency, while the f0 component of the generated 
LiNTF signal was extracted by the lock-in amplifier. A slow 2.5 mHz 
sawtooth ramp was superimposed to the sinusoidal modulation to scan 
the whole tuning range of the laser (see Fig. 2). The acquired 2 f-LiNPAS 
signal is shown in the upper panel of Fig. 4, while the whole absorption 
spectrum of water vapor in a matrix of standard air is displayed in terms 
of the absorption coefficient in the lower panel of the same graph. 

As predicted, four water vapor peaks were detected within the LD 
tuning range, with a maximum signal of 161.3 pA corresponding to the 
water absorption peak at 7181.14 cm− 1. The noise level was evaluated 
as the 1σ-standard deviation of the acquired data in the 7188.00 – 
7189.00 cm− 1 range, far from H2O absorption features. Considering a 
noise of 0.4 pA, the signal to noise ratio (SNR) for the most intense peak 
is ~400, corresponding to a noise equivalent concentration (NEC) of 
~30 ppm at 100 ms integration time and a normalized noise equivalent 
absorption (NNEA) of 2.7 • 10− 7 Wcm− 1Hz− 1/2 [22]. 

The performances of the LiNTF prototype were compared to those of 
a standard 32 kHz QTF, which has both similar geometry, and resonance 
frequency (as shown in Fig. S1). The measured resonance frequency and 
quality factor at atmospheric pressure of the employed QTF are f0 
=32739.9 Hz and Q =9100, respectively. The QTF frequency response 
is shown in Fig. S1b of supplementary material. Replacing the LiNTF 

Fig. 3. Normalized resonance curve of the LiNTF (black dots). A fundamental 
resonance frequency of f0 =39196.6 Hz and a quality factor of Q = 5900 were 
extracted at atmospheric pressure using a Lorentzian fit (red curve). 

Fig. 4. In the upper panel, 2 f-LiNPAS spectrum measured for a sample of air with a 1.2% concentration of absolute humidity at atmospheric pressure. In the lower 
panel the absorption coefficient for a standard air sample from HITRAN database. 
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with the selected QTF in the setup shown in Fig. 2 and working in the 
same experimental conditions of the LiNPAS measurements, a 2 f-QEPAS 
spectrum of the standard air sample was acquired and it is reported in 
Fig. S2 of supplementary material. Considering a noise of 0.9 pA, the 
SNR for the most intense peak is ~450 at 1.2% water vapor concen-
tration, corresponding to a NEC of ~26 ppm at 100 ms integration time 
and a NNEA =2.4 • 10− 7 Wcm− 1Hz− 1/2. These results show that the 
LiNTF prototype performances are comparable to those of a standard 
QTF. 

Finally, an Allan – Werle deviation analysis was performed to 
determine the noise dependence on the lock-in integration time [23]. 
For this analysis, the laser wavelength was locked at 7184.30 cm− 1, 
where no absorption occurs, working in the WM-2 f scheme. The Allan – 
Werle deviation analysis of the acquired signal is shown in Fig. 5. For an 
integration time of 20 s, a noise reduction of one order of magnitude is 
achieved, down to 0.03 pA, corresponding to a NEC of ~2 ppm. The 
detection limit, mainly depending on the thermal noise reduction at 
increasing integration times, scales down as 1/√t just like standard 
QTFs in QEPAS [22,23]. 

In conclusion, the possibility to employ a lithium niobate tuning fork 
resonator as a transducer in photoacoustic spectroscopy-based gas sen-
sors was demonstrated. Water vapor was selected as the target gas, 
achieving an SNR of 400 for a 1.2% concentration of H2O at atmospheric 
pressure and 100 ms lock-in integration time. An Allan – Werle deviation 
analysis showed that a noise reduction of one order of magnitude can be 
achieved increasing the integration time up to 20 s. The LiNTF showed 
comparable performances with respect to a standard QTF employed as a 
photoacoustic detector under the same experimental conditions. These 
results set a promising starting point for the development of fully inte-
grated LiNPAS-based trace gas sensors on LiN substrates. In order to 
improve the LiNTF performances as piezoelectric transducers in photo-
acoustic spectroscopy, two main strategies will be adopted: i) the 
coupling with a pair of acoustic resonator tubes, which has been proved 
to provide SNR enhancement factors starting from ×30 up to ~×60 for 
QTFs [24] and ii) the design and test of new LiNTF geometries, 
comparing their performances to find the most suitable one for photo-
acoustic detection. Furthermore, the performances of LiNTFs as light 
detectors in a light-induced thermo-elastic spectroscopy (LITES) 
configuration can be also investigated for the development of tunable 
diode laser absorption spectroscopy (TDLAS)-based gas sensors [25–28]. 
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