
SOLIDS

uPURPOSE / LEARNING OBJECTIVES:

u Familiarize with the solid structure.

u Understand differences between 
bonding in gaseous molecules and 
molecules belonging to a solid

u Describe  important solid properties 
from the band theory.



OUTLINE

u Types of solids

u Band theory

u Free-electron model

u Electron motion in a periodic structure

u Conductors, Insulators and Semiconductors

u Quantum theory of electrical conductivity

u Radiative transition in solids



Gases vs. Solids

u In gases the average distance between molecules is much greater than the 
size of the molecules and the intermolecular forces are much weaker than 
the forces which hold the atoms in the molecule together. Thus in gases the 
molecules retain their individuality.

u In a solid, the atoms (or molecules) are tightly packed and held in more or 
less fixed positions by forces, of electromagnetic origin, which are of the 
same order of magnitude as those involved in molecular binding. The 
properties of the molecules/atoms of the solids are modified by the nearby 
atoms

u From the quantum-mechanical point of view, determining the structure of a 
solid consists in finding a stable configuration of nuclei and electrons which 
are subject to their electronic interactions and which move according to the 
laws of quantum mechanics. 

u The two main differences between the structure of a solid and that of a 
molecule are the large number of atoms involved and the regularity in their 
arrangement. Several types of approximations are used to study the structure 
of a solid, depending on the dominant factors involved in each solid.



Periodicity

u Some solids, show a regular arrangement of the atoms or groups of atoms: 
the structure exhibits a periodicity constituting what is called a crystal 
lattice; 

u Therefore, it is necessary to study only the basic unit or cell of the lattice, 
since all properties repeat from cell to cell.

ORDER



Lattice

A lattice is defined by 3 vectors (a1, a2, a3) and each point in the lattice (R’) can 
be obtained by translation from another point (R):

         R’ = R + m1a1 + m2a2 + m3a3

        with m1, m2, m3 integers.



Bravais lattices



Semiconductor lattice

Most semiconductors have an 
underlying fcc lattice with two 
atoms per basis of coordinates
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Elemental semiconductors such as 
Si, Ge, C fall in this category but 
also many other like GaAs, AlAs, 
CdS…



Types of solids

u Atoms and molecules are stuck together by chemical bonds. Solids may be 
classified according to the predominant type of binding.

u Covalent solids (e.g., in semiconductors, e.g. Si, ZnO)

u Ionic solids (in salts, e.g. NaCl)

u Hydrogen solids (e.g. in ice)

u Van der Waals or molecular solids (e.g. in physisorbed CO2 condensed on solid
surfaces)

u Metallic solids (in metals, e.g. Cu)

u Characteristic distances that we will consider are bond lengths. E.g. in a solid
𝐿 ≈ 3Å ≈ 3×10#$𝑐𝑚
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Covalent solids

u In a covalent solid the atoms are bound together by localized 
directional bonds similar to those found in our discussion of the 
H2 molecule.

u The crystal lattice is determined by the orientation and nature 
of the directional bonds. 

u A typical case is diamond, in which the four bonding electrons 
of each carbon atom are oriented along the directions of sp3 
hybrid wave functions



Macroscopic features of covalent solids

u Extremely hard and difficult to deform

u Poor conductors of heat and electricity because there are no free electrons to 
carry energy or charge from one place to another

u High energy is required to excite whole-crystal vibrations in a covalent solid 
due to the rigidity of the bonds. Whole-crystal vibrations therefore have a 
high frequency.

u Electronic excitation energies of covalent solids are of the order of a few eV, 
large compared with the average thermal energy (of the order of kT), which 
at room temperature (298 °K) is about 2.4*10-2 eV; hence covalent solids are 
normally in their electronic ground state

u Many covalent solids are transparent, because their first electronic state is 
higher than the photon energies in the visible spectrum



Ionic crystals

u They consist of a regular array of positive and negative ions resulting from the 
transfer of one electron (or more) from one kind of atom to another.

u The ions are so arranged that a stable configuration is produced under their 
mutual electronic interactions.

u Strong forces due to the charges: the ions are bound together by Coulomb 
interaction

𝑉 𝑟 = 𝑍
𝑞%𝑞&
𝑟

u Strong forces means large melting points
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Macroscopic properties of ionic crystals

u Because they have no free electrons, ionic crystals are also poor conductors 
of heat and electricity

u However, at high temperatures the ions may gain some mobility, resulting in 
better electrical conductivity.

u Some ionic crystals strongly absorb electromagnetic radiation in the far 
infrared region of the spectrum: energy needed for exciting lattice vibrations. 
This energy is generally lower for ionic than for covalent crystals, due to their 
relatively weaker binding force.

u Most ionic crystals are diamagnetic because the ions, having a complete shell 
structure with all electrons paired, have no net magnetic moment.

u The ions are spherically symmetric*, and thus their binding does not show 
directional preference, as do those of covalent solids.

* Because in the ionic form they have a complete shell structure



Hydrogen-bond solids

u They are characterized by strongly polar molecules having one or 
more hydrogen atoms, such as water, H2O, and hydrofluoric acid, HF

u E.g. ice, in which the water molecules have tetrahedral 
arrangement. 

u The relatively open structure of ice accounts for the larger volume 
which ice has by comparison with water in the liquid phase.

Arrangement of water molecules in ice.



Molecular solids

u These solids are made of substances whose molecules are not polar. 

u No covalent bonds between atoms of two different molecules may be formed. 
Molecules in this type of solid retain their individuality. 

u They are bound by the same intermolecular forces that exist between 
molecules in a gas or a liquid: Van der Waals’ bonds

u Interaction between fluctuating induced dipoles. 

u Potential energy of interaction between two neutral molecules at distance d 
and with electronic cloud of size r:

𝑉 𝑟 ~ −
1
𝑟'

u It is the force that causes condensation of inert or non-interacting gases. 
Materials bound by this force have a very low melting point.
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Macroscopic properties of molecular
solids

u Molecular solids are not conductors of heat 
and electricity

u They are very compressible and 
deformable

u Potential energy curves describing the 
interaction between two atoms of an inert 
gas in the solid state is shown in the figure
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Metals

u Metals are elements which have relatively small ionization energies, and 
whose atoms have only a few weakly bound electrons in their outermost 
incomplete shells.

u These outermost weakly bound electrons are easily set free using the energy 
released when the crystal is formed. 

u A metal thus has a regular lattice of spherically symmetric positive ions that 
remain when the outermost electrons are set free, forming an electronic 
“gas"

u These electrons move, more or less freely, through the crystal lattice and 
therefore are not localized.



Macroscopic properties of metals

u Excellent thermal and electrical conductivity, for which the free electrons are 
mainly responsible, the reason being that the free electrons easily absorb any 
energy from electromagnetic radiation or lattice vibrations and increase their 
kinetic energy and their mobility

u Metals are opaque, since the free electrons can absorb the photons in the 
visible region

u High reflection coefficient for electromagnetic waves, which gets scattered 
by the free electrons

u Forces holding the metal lattice together are spherically symmetric; 
therefore these lattices resemble the closely packed spheres discussed for 
ionic crystals.



Solid with mixed properties

u E.g. graphite

u Layers of carbon atoms arranged in the form of a hexagon. The atoms in a 
layer are bonded by localized covalent σ -bonds which use sp2 hybrid wave 
functions and nonlocalized 𝛑-bonds, as in benzene

u The nonlocalized 𝛑 -bonding electrons are free to move parallel to the layers, 
which explains the electrical conductivity of graphite parallel to the layers 
but not perpendicular to them. 

u Successive layers of atoms are held together by weak van der Waals forces, 
which accounts for the flaky, slippery nature of graphite. In fact, it is used as 
a lubricant.



Calculation of the internal potential energy 
of an ionic NaCl crystal.

u The attractive electric potential of Na + with 6 nearest neighbors Cl- is:

𝐸(% = 6 −
𝑒&

4𝜋𝜖)𝑅

u The repulsive potential energy between the 12 Na+ ions at a distance 2𝑅 is

𝐸(& = 12
𝑒&

4𝜋𝜖) 2𝑅

u The attractive electric potential of Na + with 8 Cl- at distance 3𝑅 is

𝐸(* = 8 −
𝑒&

4𝜋𝜖) 3𝑅

u The repulsive potential energy with 6 Na+ ions at a distance 2𝑅 is

𝐸(" = 6
𝑒&

4𝜋𝜖)2𝑅

R is the distance 
between nearest 
neighbors



Internal potential energy of an ionic 
NaCl crystal

u The resultant potential energy is their sum:

𝐸( = − +!

",-".
6 − %&

&
+ $

*
− 3 + ⋯ = − /+!

",-".

u 𝛂 is the sum inside the parentheses, and is called Madelung's constant.

u In the case of a face-centered-cubic lattice such as NaCl, the Madelung 
constant is 1.7476. 

u In general, a depends only on the geometry of the crystal; for a bodycentered 
lattice, such as CsCl, its value is 1.7627.

u Since 𝛂 is positive, the potential energy is negative and the interionic force is 
attractive at all distances, with no minimum. 

u Therefore the crystal should coalesce into a closely packed structure with no 
stable configuration. However, we know that this is not the case. 



Internal potential energy of NaCl crystal

u The disagreement results from considering the ions as point charges. 

u When two atoms come very close together the nuclear repulsion (partially 
screened by the electron shells) and the repulsion among the filled electron 
shells enter into effect.

u We should add a short-range repulsive term to the potential energy:

𝐸(,1+(23456+ =
𝛽𝑒&

4𝜋𝜖)𝑅7

u Therefore the effective potential energy becomes:

𝐸( = −
𝑒&

4𝜋𝜖)
𝛼
𝑅
−
𝛽
𝑅7

u The graph of this potential energy is similar to the molecular one

𝛃 and n are  two constants
to be determined



Calculation of eq potential energy

𝑑𝐸(
𝑑𝑅

.8."

= −
𝑒&

4𝜋𝜖)𝑅)
−
𝛼
𝑅)&

+
𝑛𝛽
𝑅)79%

= 0 → 𝛽 = 𝛼
𝑅)7#%

𝑛

u We can include 𝛃 in the eq of the potential energy:

𝐸( = −
𝛼𝑒&

4𝜋𝜖)𝑅:
𝑅)
𝑅
−
1
𝑛
𝑅)
𝑅

&

u The equilibrium potential energy of the Na+ ion, obtained by setting R = R0 is

𝐸( = −
𝛼𝑒&

4𝜋𝜖)𝑅:
1 −

1
𝑛

u We find a similar result if we start with a Cl- ion. Given that N is the number 
of ion pairs in the crystal (which in our case is the same as the number of 
molecules), the internal potential energy of the crystal is

𝑈 = −
𝑁𝛼𝑒&

4𝜋𝜖)𝑅:
1 −

1
𝑛



Heat of formation of the crystal

u The experimental value of U for NaCl is —7.77*105 J mole-1 or —185.7 kcal 
mole-1.

u This result is obtained by measuring the heat of formation of the crystal. 

u Substituting this value of U previuos Eq., with N equal to Avogadro’s number 
and R0 = 2.81 * 10-10 m, we obtain n = 9.4. 

u For other cubic crystals the value of n is of the same order of magnitude. This 
value of n is consistent with other calculations.



Lattice vibrations

u Let us consider a linear lattice; that is, a row of identical atoms separated 
the distance a

u As a first approximation we shall assume that during the vibrations each atom 
interacts only with its two neighbors

u If β is the elastic constant of the bond, the force on the nth atom to the right 
due to the (n +1)th atom is 𝛽 𝜉79% − 𝜉7

u Thus the equation of motion is 

𝑀 ;!<#
;=!

= 𝛽 𝜉79% − 𝜉7 − 𝛽 𝜉7 − 𝜉7#% = 𝛽 𝜉79% − 2𝜉7 + 𝜉7#%



Lattice vibrations

u We try a solution of the form 𝜉7 = 𝜉)𝑒#5(?=9@7!)

u The term kna gives the phase of each atom and resembles the 
phase term kx in a wave propagating through a continuous 
medium.

u Solving the differential equation we obtain:

−𝑀𝜔& = 𝛽 𝑒5@! + 𝑒#5@! − 2 = −4𝛽 sin2
1
2
𝑘𝑎 → 𝜔 = 2

𝛽
𝑀
sin

1
2
𝑘𝑎

u This equation gives the allowed frequencies in the lattice.

u The fact that there is a maximum frequency means that there 
is an upper limit or cutoff frequency for the elastic (i.e., 
acoustical) waves in a solid.



Lattice vibrations

u Let us now consider a lattice composed of two kinds of atoms of masses 
M1 and M2, arranged alternately so that the distance between 
neighboring atoms is a and the lattice space period is 2a

u In this case, the frequency varies with the wave vector as: 

u The upper values of ω constitute the optical branch and the lower ones 
the acoustical branch of the frequency spectrum of the lattice.

u The reason for naming the branches “acoustical” and “optical” is that in 
the acoustical mode both classes of ions oscillate in phase, while in the 
optical mode they have a phase difference of 𝛑.



Optical and acoustic modes

u The induced dipole moment in the optical 
mode is much larger than in the acoustical 
mode, and therefore the optical mode 
shows stronger emission and absorption of 
electromagnetic radiation than the 
acoustical mode. 

u The optical frequencies fall in the infrared 
region of the spectrum, and hence ionic 
crystals display a strong response to 
infrared electromagnetic radiation.

u In a more refined analysis, the normal 
modes of vibration of a solid must be 
quantized

u The similarity to the absorption or emission 
of radiation suggests introduction of the 
concept of a phonon



Electron motion in solids

u When an electron moves past an ion, the potential energy it feels is the 
coulomb potential energy, proportional to 1/r

u When there are several ions like in three-dimentional crystal the potential 
energy of an electron moving through the lattice also has a three-dimensional 
periodicity, repeating from one cell to the next.

Single ion Two ions Several ions in a row



Energy levels in a linear crystal lattice

u The innermost electrons (e.g. in E1) in a crystal are essentially localized and their 
energies and wave functions may be considered the same as in the isolated atoms.

u An electron with energy E2 is not bound so strongly to a particular ion and, by 
leaking through the potential barrier, it can move about in the lattice. 

u An electron with energy E3 is not bound to any atom in particular; it has great 
freedom of movement throughout the lattice. 

u These quasi-free electrons are not only responsible for most of the collective 
properties of the lattice (such as the electric and thermal conductivities), but they 
also provide for the binding of the atomic ions which form the crystal structure.



Band formation
u In a molecule, each atomic energy level splits into a number of levels equal to 

the number of atoms. 

u In a lattice, each atomic energy level gives rise to N closely spaced levels. 
Their spacing and position depend on the interionic separation

u When N is very large the different energy levels are so closely spaced that one 
may say they form a continuous band of energy



Band theory

u An energy band corresponding to a given atomic 
state can accommodate a maximum of 2N 
electrons, or two electrons per ion due to Pauli’s 
exclusion principle

u The bands are designated as s-, p-, d-, etc., 
according to the value of the angular momentum 
of the atomic state to which they are related.

u From the energy curves at the right, we can see 
that the higher the atomic energy level, the 
larger the interionic distance at which the bands 
begin to be formed.

u As the interionic distance decreases the bands 
begin to overlap.



Valence and conduction bands

u Bands associated with the inner complete shells in the parent atoms have 
their full quota of electrons allowed by Pauli’s principle. Electrons in these 
bands are also more or less localized.

u The band corresponding to the uppermost atomic shell, occupied by the 
valence electrons, is the most interesting in connection with the solid 
properties. 

u If this uppermost band is not completely filled, it is called the conduction 
band. 

u But if it is full, it is called the valence band, and the empty band just above 
it is then called the conduction band.



Example – Single Si atom

u In Si, the M shell is only partially occupied with 4 electrons (compared to 18 
possible)

u Therefore, M shell is not closed. 4 electrons are valence electrons. They 
determine the chemical bonding and the electronic properties.

u Excitation takes place by lifting a 3s1 electron into a 3p3 level creating an 
electron-hole pair.



Si2 molecule
u When two Si atoms bind together, the 4 individual valence electrons interact 

and create new molecular sub-shells responsible for the chemical binding

u The new energy levels are above and below the related energies in single 
atoms: MORE energy levels with SMALLER excitation energies



Si crystal
u When the number of Si atoms increases and turn into a crystal the energy 

level splitting proceeds leading to:

u Formation of a quasi-continuos energy levels due to extremely small energy 
differences

u With two, energy separated bands: VALENCE and CONDUCTION bands

u The energy in between defines the semiconductor energy gap, which is 1.12 
eV for pure Si



Free-electron model in a solid

u Analysis of the motion of electrons in the conduction band

u Assumption: we ignore the periodic fluctuation of the potential energy and 
assume that the electrons move freely in a region of constant average 
potential energy.

u The approximate wave function o f an electron of momentum 𝒑 = ℎ𝒌 will be:
𝜓 = 𝑒5@𝒓

u For such wavefunction the condition 𝜓 & = 1 is fulfilled, meaning that we 
have the same probability of finding the electron anywhere in the lattice in 
other words the electron is free to move.



Energy in the free-electron model

u The energy of the electron, disregarding the constant average 
potential energy, will have only a kinetic term:

𝐸 =
𝑝&

2𝑚+
=
ℏ&𝑘&

2𝑚+

u This equation describes a parabola, meaning that the free-
electron model allows all values of k, so it does not provide 
information about the width of a band

u Nevertheless, we can impose a quantization condition, 
considering that to sustain standing waves, the electron’s 

wavelength λ must satisfy the requirement 𝑛 C
&
= 𝐿 where L is 

the length of a linear lattice of N ions spaced of a.

𝑘 = &,
C
= 7,

D
= 7,

E!
  with n=1,2,3,…N



Width of the band

u The difference between successive values of k is 
,
E!

 , which is very small if N 
is very large and justifies treating k as a continuous variable in spite of the 
quantization condition

u If n=N we find the max k allowed: 𝑘F!G =
,
!
 Thus the range of k-values 

allowed within the band is between —
,
!
  and 

,
!
 . 

u The maximum energy in the band, which is also the width of the band, is then

𝐸F!G =
ℏ&𝜋&

2𝑚+𝑎&

u Note that the width of the band is independent of the number of ions 
composing the lattice, a result to be expected, since adding more ions means 
more states but the periodicity of the lattice, which determines kmax remains 
the same



Density of (energy) states of free 
electrons in a solid

u DOS tells us how the electrons may distribute themselves in a 
band among the energies from zero up to Emax

u The total number of electrons per unit volume with energy 
between E and E+ dE in the band is

𝑑𝑛 =
8𝜋 2𝑚+

* %/&

ℎ*
𝐸%/&𝑑𝐸 = 𝑔 𝐸 𝑑𝐸

u If the metal is in its ground state (i.e., at absolute zero), all 
electrons occupy the lowest possible energy levels compatibly 
with the exclusion principle.

u The number of electrons per unit volume that can be 
accommodated up to an energy E is given by

𝑛 = V
)

I
𝑔 𝐸 𝑑𝐸 =

8𝜋 2𝑚+
* %/&

ℎ*
V
)

I
𝐸%/&𝑑𝐸 =

16𝜋 2𝑚+
* %/&

3ℎ*
𝐸*/&



Fermi energy

u If the total number of electrons per unit volume is less than the total 
number of energy levels available in the band, the electrons will then 
occupy all energy states up to a maximum energy, designated by 𝜖J, 
and called the Fermi energy

u If 𝐸 = 𝜖J, n should be n0, therefore 

𝜖J =
ℎ&

8𝑚+

3𝑛)
𝜋

&/*

u When the Fermi energy is equal to the energy band width, the band is 
fully occupied.

u When a band is not completely full, a small amount of energy is enough 
to excite the uppermost electrons to nearby energy levels.

u Only the uppermost electrons can be thermally excited, since kT at 
room temperature is about 0.025 eV, which is very small compared with 
𝜖J, and the exclusion principle makes it impossible for the low-energy 
electrons to be excited into nearby occupied states.



Work function of a metal

u The electrons that can be thermally excited are those 
with an energy greater than 𝜖J . 

u The states occupied by the excited electrons fall in an 
energy region of the order of 20 kT (0.5 eV) above 𝜖J.

u The work function of a metal is the energy which is 
needed to extract an electron from the highest 
occupied level. 

u At absolute zero the Fermi energy is the uppermost 
occupied level. 

u Since thermal energies are very small compared with 
the Fermi energy, only a very few electrons are 
excited above the Fermi energy even at room 
temperatures. 

u For this reason the work function is practically 
constant over a wide range o f temperatures.

Distribution of electrons among the energy levels
in a thermally excited state of the lattice



Electron Motion in a Periodic Structure

u To improve the free-electron model of a solid, we shall incorporate the effect 
of the periodic structure of the lattice.

u In the wavefunctions, we should include a term u(r) that imposes a change in 
the amplitude of the wavefunctions with the period of the lattice:

𝜓(𝒓) = 𝑒5𝒌L𝒓𝑢(𝒓)

u In one dimension, u(x)=u(x+a) with a= lattice parameter: u is a modulating 
amplitude, repeating itself from one lattice cell to the next.

u Bloch theorem: u is a periodic function with the same period as the lattice 
spacing: the system can be completely characterized by their behavior in a 
primitive cell, also called single Brillouin zone.



Wavefunctions in a periodic structure

We may obtain a picture of the 
wave functions by considering 
that u(x) resembles the wave 
function of the isolated atoms 
and replacing eikx by the wave 
functions of a free particle in a 
potential box.



Energy in a periodic structure

u The energy of the electron is not entirely kinetic, as it 
is in the case o f the free electron model, because of 
the potential energy due to the lattice ions.

u The expression for the energy in terms of k is 
complicated and depends on the geometry of the 
lattice. 

u The important result is that the energy has a 
discontinuity or gap at certain values of k which, for a 
linear lattice of spacing a, are given by

𝑘 =
𝑛𝜋
𝑎 , 𝑛 = ±1,±2,…

u For values of k not near the Brilloin zone boundaries, 
the energy follows the parabolic behavious similar to 
that of a free particle.

u Therefore the lattice effect is to produce energy gaps: 
the values of 𝑘 = 7,

!
are those at which the lattice 

blocks the motion of the electrons in a given direction
by forcing them to move in the opposite direction.



Electron velocity

u The velocity of the electrons represented by a wave packet centered about the 
energy E and wave number k is

𝑣 =
1
ℏ
𝑑𝐸
𝑑𝑘

u The velocity is zero both at the bottom and at the top of the band. At 
intermediate regions in the band, it is very close to the free-electron velocity, 
ℏ𝑘/𝑚

Velocity Acceleration



Effective mass of the electron

u The effective mass m* of the electron is given by m* = F /a, where F is the 
external force applied to the electron (such as an electric field) and a is the 
actual acceleration due both to F and to the lattice interaction. 

u Thus we cannot expect that m* will be the same as the electron mass, nor 
should we expect it to be a constant.

𝑚∗ =
ℏ&

𝑑&𝐸/𝑑𝑘&

u m* is a function of the parameters of the lattice and of the electron’s lattice 
momentum hk.

u m* is positive at the bottom of an energy band and negative at the top. It 
becomes very large, actually infinite, at the inflection point of the energy 
curve

m* at k=0



Density of states in a periodic structure

u At the bottom of the band the density of states 
closely resembles the parabolic curve of the free-
electron model, but instead of increasing steadily, the 
curve decreases almost parabolically at the top of the 
band.



Metals, insulator and semiconductors

u Metals have NO bandgap: the 
conduction and valence band 
overlap (free movement in E-
fields)

u Insulators have high bandgap 
(e.g. SiO2 9eV)

u Transport in semiconductor 
materials:

u Excitation (electr.-hole 
formation)

u External electric field 
(movement of carriers)



Band structure of sodium

u Bands corresponding to the 1s, 2s, and 2p atomic levels 
are completely filled because the respective atomic 
shells are also complete. 

u But the 3s band, which can accommodate up to two 
electrons per atom, is only half filled, since the 3s level 
in each sodium atom has only one electron.

u Actually the situation is slightly more complex because 
of the possible superposition of the bands (bottom fig).

u At the equilibrium distance r0 in the metal, about 
3.67*10-10 m, the 2p level remains practically 
undisturbed, but the bands corresponding to the 3s and 
3p atomic levels overlap.



Bann structure of Magnesium

u The magnesium atom has the configuration 1s2 2s2 2p6 
3s2, and therefore all the atomic shells are filled. 
However, the first excited level, 3p, is rather close to 
3s.

u Normally, with no overlapping, the 3s band should be 
filled and the 3p band empty, and magnesium should 
be an insulator

u Those substances whose atoms have complete shells 
but which, in the solid state, are conductors because 
of the overlapping of a filled band and an empty band 
are often called semimetals.

u In the transition metals group, such as iron, the 
overlapping bands are 3d, 4s, and 4p, and the number 
of electrons is insufficient to fill these bands. 

u Similarly, in the rare-earth group, the overlapping 
bands involved are 4f, 5d, 6s, and 6p. Hence these 
elements, when in the solid state, are conductors.



Band Structure for diamond, Si and Ge

u The bands correspond to the atomic 2s and 2p levels in diamond, 
which can accommodate up to 8 electrons. However, the carbon 
atom has only 4 electrons available for these levels

u The 4 electrons are normally in the lower or valence band, while 
the upper band is empty. At the equilibrium distance in diamond, 
about 1.5* 10-10 m, the gap is about 5 eV.

u This may be considered as a relatively large energy gap; it explains 
why diamond is such a good insulator.

u The same band scheme also applies to silicon and germanium: the 
gap between the valence and conduction bands at the equilibrium 
separation of the atoms is much smaller (1.1 eV in silicon and 0.7 
eV in germanium), and this makes it much easier to excite the 
uppermost electrons in the valence band into the conduction band.



Intrinsic conductivity in a semiconductor

u As the temperature increases, more electrons are able to jump into the next 
band.

u This has two results: 

u The few electrons in the upper or conduction band act as they would in a metal, 

u the empty states, or holes, left in the lower or valence band act in a similar way, 
but as if they were positive electrons

u Thus we have electric conduction from the excited electrons in the 
conduction band and from the holes in the valence band; the conductivity 
increases rapidly with the temperature because more electrons are excited to 
the conduction band.



Effect of Temperature on electrical 
conductivity

u In semiconductors at 0°C, the electrons are 
tightly bound in the valence band

u Increasing the temperature adds thermal energy, 
which increases the conductivity

u Hence, semiconductors have a negative 
temperature coefficient of resistance

u Metals have overlapping bands, which allows 
movement even at 0°C

u For increasing temperatures, the atomic lattices 
increase their vibration, which leads to 
increasing scattering probability of electrons, 
reducing the electric conductivity

u Hence metals have a positive temperature 
coefficient of resistance



The energy gap

How to reduce the bandgap?



Tuning the band gap

u The conductivity of a semiconductor can also be enhanced by 
the addition of certain impurities. Suppose that we replace 
some of the atoms of the semiconductor by atoms of a different 
substance

u Doping means replacing individual atoms, following a few rules:

u The new atom should be similar in size to the one being replaced

u The new atom should have an additional electron or an additional 
hole

u Elements to the immediate left/right/above or below the core 
material are used
u SiP: additional electrons, increase negative charge carriers à n-

type Si (electron transport, P is called donor)

u SiB: additional holes, increase positive charge carriers à p-type Si 
(hole transport, B is called acceptor)



Doping

u By using different materials/combinations/dopants one can tune:

u Bandgap energy

u Transport type (n or p-types)

u Overall resistivities

u To produce significant changes in the conductivity of a semiconductor, it is 
sufficient to have about one impurity atom per million semiconductor atoms.



The p-n Junction and its behavior

u When a p-type semiconductor and a n-type 
semiconductor are brought in contact a p-n junction 
forms:

u The p-type region has many holes

u The n-type region has many electrons

u In the p-n boundary we have inter-diffusion ideally to 
have the same concentrations everywhere

u However, the migration of charged particles BUILDS UP 
an electric filed around the junction à limiting the 
further migration

u Hence, there is an area around the junction which has 
no free electrons/holes, called depletion layer

u For Si-based devices, the potential difference at the 
junctions is around 0.7 V



p-n junction
u a: two samples placed in contact

u b: a diffusion or flow of holes from the left to the 
right and of electrons from the right to the left. This 
double flow produces a double layer of positive and 
negative charges on both sides of the junction, 
setting up a potential difference across the junction

u Due to the recombination of holes and electrons, the 
number of holes in the n-type semiconductor tends 
to decrease, which allows a small hole current I1 to 
flow continuously from the p-side to the n-side. 

u At the same time, due to thermal excitation, hole-
electron pairs are produced in the n-type 
semiconductor, and these excess holes can flow very 
readily across the junction into the p-side with a 
current I2. 

u At equilibrium both hole currents are identical; that 
is, I1 = I2



P-n junction

u c: If a potential difference V is applied, with the p-
side joined to the positive terminal and the n-side 
to the negative terminal of the source of V, the 
height of the potential difference across the 
junction decreases. 

u This allows a larger current I1 to the right, without 
actually changing the thermally generated current 
I2 to the left. 

u Thus a net hole current I1 — I2 results across the 
junction to the right, and this current increases very 
rapidly with V, due to the large supply of holes from 
the p-side.

u d: if the potential difference V is reversed, the 
potential difference across the junction increases. 
This reduces the value of I1, without substantially 
affecting I2 , since the supply of holes from the n-
side is temperature limited.

u Thus a net current to the left will exist across the 
junction which will approach the constant value I2 
with increasing V



Net current p-n junction

u The net current across the junction as a function of V is:

𝐼 = 𝐼% − 𝐼& = 𝐼&(𝑒
N
@O − 1)

u We conclude that a p-n junction acts as a rectifier or a 
detector device favoring the passage of a current in the 
direction p → n.

Graph of the net 
current across the 
junction as a 
function of V



Electrical Conductivity

u Let us consider the solid to be in its ground state with no electric field 
applied, and assume that the electrons are in the first Brillouin zone

u The electrons are occupying the lowest states within the band, in a symmetric 
form, so that no net current exists. 

u If an electric field is applied, all electrons experience a force in a direction 
opposite to the field and, their k-values increase in the direction of the force.

u The result is an asymmetric distribution of the electrons within the metal. 
This gives rise to a net electric current in the metal, since more electrons 
move in one direction than in the opposite direction.



Paradox

u As long as the electric field is applied, the occupation of states with k parallel 
to the force increases with time and the occupation of those states with k 
opposite decreases with time. In other words, the current increases 
continuously with time, even if the electric field is constant, due to the 
continuous acceleration of the electrons.

u This is in contrast with Ohm’s law that states that a constant electric field 
produces a constant electric current; that is, when an electric field is 
applied, the conduction electrons in a metal acquire an average and constant 
drift velocity. 

u Therefore we conclude that there must be some mechanism which prevents 
the electrons under the applied electric field from accelerating indefinitely 
up to the top of the conduction band.



Drude and Lorentz theory

u Classical theory: frequent collisions of the electrons with the positive ions, 
which constitute the metal lattice, prevent the electron from being 
accelerated continuously because the collisions drift the electrons in the 
opposite direction of the electric field.

u Conductivity = 𝜎 = 7+!P
F$

 

u where n is the number of electrons per unit volume and 𝜏 is a parameter 
called the relaxation time.

u The conductivity in this eq does not depend on temperature. Nevertheless, it 
was experimentally demonstrated that 𝜎 varies with 1/T

u Classical theory is not correct and we need quantum theory



Quantum theory for electrical 
conductivity
u Electron = a wave packet. 

u The motion of a wave packet may be hindered by scattering. Initially the wave 
packet is moving in a particular direction with the wave number k; after the 
scattering it is moving with a different wave number, say k’, in a different 
direction. 

u Scattering produces a transition k—> k'. In the transition, some momentum and 
energy are transferred to the scatterer. 

u The effect of the applied electric field is to accelerate the electrons in a certain 
direction; the effect of the scattering is to disarray the electron motion, hindering 
the accelerating effect of the electric field.

u A steady state is produced when these two effects balance each other, in a 
statistical sense, resulting in a constant average velocity of the conduction 
electrons.

u Since scattering cannot violate the exclusion principle, the electrons must be 
scattered into vacant states.

u The electrons that are scattered are the most energetic ones.



Electron scattering 

u Any irregularity in the periodicity of a lattice disturbs the otherwise free 
motion of the electron, and the disturbance can be considered as a 
scattering. 

u These lattice irregularities are due to two factors: 

u Imperfections in the solid: vacant spaces, interstitial and displaced atoms, 
dislocations, and impurities. The contribution to the conductivity due to scattering 
by imperfections in the lattice is essentially independent of temperature.

u Thermal oscillatory motion of the ions which constitute the lattice. Since the ions 
do not all oscillate in phase, their vibrations give rise to small fluctuations in the 
lattice spacing. the lattice-vibration effect is temperature-dependent, since the 
amplitude of the vibrations depends on the vibrational energy and this in turn 
depends on the temperature.



Electronic conductivity

u To account for the lattice vibrations effect on the conductivity we use again 
the effective mass m* defined for the electron motion in a lattice, therefore 

𝜎 =
𝑛𝑒&𝜏
𝑚∗

u Also n is not the total number of electrons per unit volume in the conduction 
band; rather it is the effective number of electrons which participate in the 
conduction. This number is smaller than the total number of electrons in the 
conduction band, due to the restriction imposed by the exclusion principle.

u Given that Ps , is the probability of scattering of the electrons per unit time, 
the relaxation time is given by

𝜏 =
1
𝑃4



Scattering probability
u Σ4= scattering probability per unit length, also called the 

macroscopic scattering cross section

u The conduction electrons move with a velocity very close to 
that corresponding to the Fermi energy. Designating this 
velocity by vF, we have that 𝑃4 = 𝑣JΣ4 and 𝜏 = 1/𝑣JΣ4

u Σ4 is given by the macroscopic cross section due to the 
impurities Σ4,5 and the one due to the lattice vibrations Σ4,6

u Therefore we can write the resistivity of the metal as 

𝜌 =
1
𝜎
=
𝑚∗𝑣J
𝑛𝑒&

Σ4,5 + Σ4,6 = 𝜌5 + 𝜌6

u 𝜌5 is the resistivity o f the metal due to the impurities and 
therefore is essentially temperature independent (but varies 
from one specimen to another), and

u 𝜌6 is the resistivity due to thermal vibrations; increases with 
the temperature and is the same for all specimens of the same 
metal.

Resistivity of three specimens of sodium 
with different impurities



Radiative Transition in solids

u X-ray emission in solids takes place when, for example, an electron in the 
uppermost band undergoes a transition into a lower-level band where a 
vacant state exists.

u These vacant states are produced by electron bombardment or by absorption 
of radiation.

u The electron making the transition can start from any of the possible energy 
levels in the uppermost band, and therefore the energy of the emitted 
photons has a spread of the order of EF (that is, the photons have energies 
between E0 and about E0 - EF). 

u A sharp drop of the intensity obviously occurs for EF



Absorption

u Electrons in B can be excited into nearby empty states in the same 
band when they absorb photons with energies from zero up to the 
energy required to reach the top of the band.

u The other photons that can be absorbed are those that take an 
electron from B into B'.

u If the bands B and B ' overlap, no energy gap exists and a continuous 
absorption spectrum results.



Absorption

u In the case of an insulator, only transitions from the valence band B into the 
conduction band B ‘ are possible. Therefore, to induce transitions, the 
photons must have a minimum energy of a few eV.

u This would also be the case for semiconductors, except that due to the 
smallness of their energy gap, some electrons occupy band B’  

u Lattice defects, mainly impurities, have important consequences. They
introduce new energy levels, which may fall in the energy gap. Electron 
transitions into these energy levels allow absorption of photons of much
lower energies than needed to go from B to B ‘



Luminescence

u When the electrons in atoms, molecules, or solids are excited by some means 
there are several processes which compete to bring about deexcitation

u In some instances the favored process is radiative transition and the 
substance glows when it is illuminated with radiation of the proper 
wavelength, or is excited by some other means. 

u Substances having this property are called luminescent. Luminescence in 
solids is closely related to impurities and lattice defects.

PhosphorescenceExcitation Luminescence



Questions

Ø What defines the type of solids?

Ø How are bands formed?

Ø What are the limitations of the free-electron model?

Ø What is the difference between conductors, semiconductors and insulators?

Ø How can we describe the electrical conductivity?

Ø How can the Fermi energy and the band width be measured experimentally?

Ø What are the phenomena of luminescence and phosphorescence?



Reference

u Chapter 6 from Alonso-Finn “Fundamental University Physics. III Quantum and 
Statistical Physics”


