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ABSTRACT: A compact and portable gas sensor based on quartz-enhanced
photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane
(C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband
cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of
the three alkanes, and partial least-squares regression analysis is employed to filter out
spectral interferences and matrix effects characterizing the examined gas mixtures.
Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed
to train and test the regression algorithm, achieving a prediction accuracy of ∼98%,
∼96%, and ∼93% on C1, C2, and C3, respectively. With respect to previously
reported QEPAS sensors for natural gas analysis, the high prediction accuracy as well
as the capability to discriminate and detect C3 within natural gas-like complex
mixtures provided by the employment of partial least-squares regression mark
significant improvements. Furthermore, these results enable an improved perform-
ance of the sensor for in situ, real-time, and online natural gas composition analysis.

1. INTRODUCTION
Gas detection and compositional analysis are fundamental
across the oil and gas industries. During the exploration and
production of hydrocarbon fluids, gas may be captured for
analysis from downhole tools, the wellhead, from separators, or
extracted from drilling fluids at the surface through mud
logging operations.1,2 The relative abundance of different light
hydrocarbon species (from methane to pentane, C1−C5) in a
gas sample can be used to determine the properties of the gas
(e.g., wetness, density), and their ratios are useful in fluid
typing and fingerprinting.3,4 Gas composition information also
helps in the economic evaluation and designing of the facilities
for production.5 Once gas plants refine a commercial natural
gas (NG) product, its composition is monitored to determine
its calorific value, which is related to its combustibility and
therefore indicative of its quality and final price.6 The calorific
value is then monitored during distribution as gas from
different sources is blended, transported, and sold to end-users.
Up to date, standard methods for the analysis of natural gas
composition require the use of gas chromatographs (GCs),
frequently coupled to flame ionization detectors (GC-FIDs) or
mass spectrometers (GC-MSs).7,8 These conventional meth-
ods typically require extensive maintenance and calibration
tasks in the field. On the other hand, optical spectroscopy
techniques, while being simpler, more cost-effective and
reliable, and better suited for online monitoring, have been
hindered by challenges in obtaining quantitative composition

information due to their overlapping spectral components in
natural gas samples. However, when combined with chemo-
metric methods, optical spectroscopy can provide improved
quantitative predictions.9

Despite being characterized by an extremely high sensitivity,
GC analysis has multiple drawbacks, which ultimately depend
on either the detectors or the hyphenated systems
deployed.8,10 For example, FIDs display an almost universal
response to organic compounds, thus becoming strongly
limited when applied to composition analysis.8 On the other
hand, the main drawbacks of GC-MS systems are represented
by (i) the need for high vacuum pumps (down to 10−7−10−6

Pa), (ii) the coupling interface between the two instruments,
(iii) the cross-interferences in the mass spectra, (iv) the analyte
separation intrinsic to the technique, and (v) the overall cost of
the whole apparatus.8,9

Gas sensing systems based on optical spectroscopy have
been demonstrated to be a solid and reliable alternative to
traditional analytical techniques for hydrocarbon detec-
tion.11−14 Among the large number of optical-based
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techniques, gas sensors based on quartz-enhanced photo-
acoustic spectroscopy (QEPAS) represent a solid alternative to
GCs for NG analysis, thanks to their compactness, ruggedness,
high selectivity and sensitivity,15 as well as low cost and
capability of performing online, dynamic flow, and non-
destructive measurements.16,17 Indeed, QEPAS sensors have
already been successfully deployed for the detection of lighter
alkanes, i.e., C1, C2, and C3, from traces to high
concentrations.18−23

QEPAS is an indirect absorption technique, which is
developed as a variation of traditional photoacoustic spectros-
copy (PAS), employing a quartz tuning fork (QTF) as a
sharply resonant transducer. A laser beam, whose wavelength is
resonant with an absorption feature of the target molecule, is
focused between the QTF prongs and modulated at its
resonance frequency or one of its subharmonics. Then, the
weak sound waves, generated through the relaxation of the
excited molecules via nonradiative energy transfer pro-
cesses,17,24 are detected and converted into an electric signal,
exploiting the piezoelectric properties of quartz. As reported in
the literature, QEPAS response is dependent on the sample
composition, influencing both the photoacoustic relaxation
cascade and the sound wave propagation.25−27 Fluctuations in
the mixture composition may lead to variations of the gas
density, influencing both the sound speed and the QTF quality
factor.27,28 Conversely, the relaxation rate of the excited
molecule is affected by the different components of the
mixture, having an effect on its relaxation pathway and, in turn,
on the QEPAS signal. These effects, known as “matrix
effects”,19,29,30 together with overlapping spectral features of
different analytes, are the most challenging aspects of QEPAS
signal processing.29,31,32 The issue of spectral overlap is crucial
in hydrocarbon detection by optical spectroscopy. In
particular, the absorption bands of multiple hydrocarbons fall
in the spectral range around 3.3 μm, related to a stretching of
the C−H bond common to all of the alkanes.33 A first tentative
quantification of C1, C2, and C3 concentrations in a diluted
natural gas-like gas sample was demonstrated by Luo et al.,23

employing a QEPAS sensor with a 3345 nm interband cascade

laser (ICL) as a laser source and a standard QTF as a sensitive
element. The evaluation of the sample composition relied on a
complex algorithm mainly based on univariate calibrations for
the three main alkanes and exploiting the saturated absorption
of C1 at tens of percent scale to evaluate the effect of the C2
and C3 fluctuations in terms of cross-sensitivities on methane
detection. This approach has proved to have limitations in
modeling the energy relaxation in multicomponent gas
samples, and it does not offer a clear advantage in terms of
response time, even though the signal interpretation is based
on peak signal extraction rather than extended spectra
acquisitions.23 Recently, partial least-squares regression
(PLSR) has been proposed as a multivariate analysis (MVA)
technique to filter out matrix effects and spectral interferences
in the QEPAS response, thus providing a more accurate
prediction of every single analyte concentration in complex gas
mixtures compared to the standard univariate calibra-
tion.19,30,34

In this work, we report on a compact and portable QEPAS
sensor to detect C1, C2, and C3 in NG-like mixtures,
employing an ICL emitting at 3.367 μm to exploit the most
intense absorption band of propane in the whole infrared
region. NG-like mixtures are referred to as mixtures containing
C1, C2, and C3 in typical NG concentrations but diluted in a
1:10 ratio in pure nitrogen. PLSR is used to retrieve the analyte
concentrations, removing both spectral interferences and
matrix effects. The data analysis was performed exploiting a
machine-learning-like approach, training the algorithm using
C1−C2−C3 mixtures, whose concentrations varied in the
range of 7−9%, 0−1%, and 0−1% within a nitrogen matrix,
respectively. The obtained results demonstrate the suitability
of the developed sensor as a versatile tool for real-time and in
situ monitoring of the most significant geochemical finger-
prints in natural gas, even with widely variable gas matrices,
paving the way toward a fully integrated QEPAS-based NG
analyzer system.

Figure 1. Architecture of the QEPAS sensor. Black arrows represent electronic connections, bold blue lines represent gas handling line connections,
and dashed black arrows represent USB connections. The box walls are represented as bold black rectangles. DFB-ICL - Distributed FeedBack
Interband Cascade Laser, ADM - Acoustic Detection Module, QTF - Quartz Tuning Fork, AR - Acoustic Resonator, PM - Power Meter, SH -
Sensor Head, TEC - ThermoElectric Cooler, PR. CTRL - PRessure ConTRoLler, RP - RedPitaya, and PC - Personal Computer.
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2. SENSING ARCHITECTURE FOR METHANE, ETHANE,
AND PROPANE DETECTION

A scheme of the QEPAS sensor employed to acquire the
spectra associated with mixtures of C1, C2, and C3 in a pure
nitrogen matrix is depicted in Figure 1. The sensor is enclosed
within a portable 19″-diagonal aluminum rack box.

The sensor head (SH) hosts the optical components of the
sensor, preventing possible misalignments, thus increasing its
ruggedness. Light emitted by a DFB-ICL (Nanoplus GmbH),
with a central emission wavelength of 3367 nm (2970 cm−1)
and a peak power of ∼11 mW at 23 °C, is focused through an
acoustic detection module (ADM, Thorlabs ADM0135), i.e., a
vacuum-tight gas cell equipped with two ZnSe wedged
windows with a 2−13 μm antireflection coating (Thorlabs
WG70530-E4) and two connectors for gas inlet and outlet.
The ADM encloses a spectrophone consisting of a T-shaped
quartz tuning fork (QTF) acoustically coupled to a pair of
acoustic resonator (AR) tubes, exhibiting an overall resonance
frequency f 0 = 12461.6 Hz and a Q-factor ≅ 16,500 at an
operating pressure of 200 Torr. The QTF output piezoelectric
current is converted into a voltage signal by means of a
transimpedance amplifier with a 10 MΩ feedback resistor (not
shown in the setup scheme). A power meter (Thorlabs
S120C) is placed behind the ADM for alignment purposes,
and it is connected to a PC via a USB connection.

The QTF output signal is fed to a RedPitaya (RP) STEMlab
125-14 board, which is also used to control a laser driver and a
thermoelectric cooler (TEC) driver chip (Thorlabs
MTD1020T), mounted on a dedicated PCB. A mainboard
bridges the electronic connections from the PCB to the RP
board, controlled by a PC by means of dedicated LabVIEW-
based software. All of the measurements were performed in
wavelength modulation and second harmonic detection (WM-
2f), modulating the laser current sinusoidally at half of the
spectrophone resonance frequency and demodulating the
spectrophone output signal at the QTF resonance frequency.36

A slow ramp can be superimposed to the sinewave to scan the
laser dynamic range. Both the modulation and demodulation
processes are handled by the RP board and a LabVIEW-based
dual-phase digital lock-in amplifier having a maximum input
voltage of 1 V.

The measurements were performed at an operating pressure
of 200 Torr and a gas flow of 25 sccm. These conditions were
kept stable and monitored by means of a pressure controller
(Alicat EPC-15PSIA-P0), a flow meter (Axetris MFM 2220-
BA-U0), a needle valve, and a diaphragm pump (Thomas
1420BLDC), connected to the RP board through the
mainboard. NG-like mixtures of the three alkanes diluted in
a nitrogen matrix were generated by means of a gas mixer
(MCQ Instruments GB-103). The gaseous samples were
generated using cylinders with the following certified
concentration: pure C1 (99.50%), 9.85% C1:N2, 1.00%
C2:N2, and 1.00% C3:N2, each one characterized by an
expanded relative uncertainty of 2%.

3. SINGLE ANALYTE SENSOR CALIBRATION AND
MATRIX EFFECTS IN TWO GAS MIXTURES

The QEPAS sensor was first calibrated for C1, C2, and C3
separately. The explored C1 concentration range for the
calibration spans from 0.99% to 9.85%, while the C2 and C3
concentration ranges span from 0.10% to 1.00%. Performing
the measurements at 200 Torr is beneficial since it is a

sufficiently low pressure to ensure a sufficient spectral
separation among the absorption features of the three
analytes.37 Examples of the single analyte QEPAS spectra
acquired by scanning the laser dynamic range from 2964.77
cm−1 to 2968.00 cm−1 are shown in Figure 2.

The spectra of the three components exhibit a high overlap
in the investigated tuning range. The single analyte calibrations
were performed by monitoring the P1, P2, and P3 peaks of C1,
C2, and C3, respectively, at different analyte concentrations.
The first two peaks correspond to the ro-vibrational transitions
falling at 2966.11 cm−1 (C1) and 2967.49 cm−1 (C2).37 P3 is
the most intense peak detectable in the targeted spectral range,
belonging to a broad C3 absorption band, as reported in the
PNNL database.38 The calibration curves obtained plotting the
QEPAS signal at different C1, C2, and C3 concentrations are
shown in Figure 3a−c.

A moderate nonlinear sensor response was observed for all
of the analytes, which is consistent with the behavior shown by
the QEPAS signal when dealing with high concentrations of
the target analytes.19 Indeed, when the target analyte
concentration is too high to consider the first-order
approximation of the Beer−Lambert law, a nonlinear trend is
expected.19 Therefore, an exponential fit curve was super-
imposed on the measured data:

= +y A yeBx
0 (1)

The retrieved fit parameters are reported in Table 1.
As reported in the literature, in the explored concentration

range, the photoacoustic signal generated by the C1 absorption
within a NG-like mixture is affected by the matrix
composition.19 For this reason, the influence of C2 and C3
concentration variations on the C1 photoacoustic signal was
investigated. This analysis was carried out by generating several
C1−C2 and C1−C3 mixtures and acquiring the QEPAS signal
on the P1 peak. The dependence of the P1 QEPAS signal on
C2 and C3 concentrations is shown in Figure 4a,b, varying the
C1 concentration in the 7.00−9.00% range.

First, by looking at the trend in Figure 4a, a significant
influence of C2 on the P1 values in the different mixtures can

Figure 2. Examples of the single analyte spectra acquired for a 9.00%
C1 (black solid line), 1.00% C2 (red solid line), and 1.00% C3 (blue
solid line) concentration in nitrogen within the 2964.77−2968.00
cm−1 spectral range.
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be inferred. Indeed, the promoting action of C2 on the C1
relaxation leads to a sharp increase by a factor of 2 up to 0.2%
C2. In contrast to the saturation in the C1 signal previously
observed,19 the decrease in the P1 signal for concentrations
higher than 0.6% (Figure 4a) is due to the spectral interference
with the negative lobe of the C2 absorption peak at 2966.17
cm−1 (see Figure 2).37 The dependence of the C1 signal on the
C3 concentration is reported in Figure 4b. In this case, a sharp
increase (a factor of ∼2.4) in the P1 signal is observed for C3
concentrations up to 0.2%, with a roll-off for C3 concen-
trations higher than 0.4%. This behavior has already been
predicted and observed for other gases, e.g., water vapor mixed
with C1.30,32 The influence of different C3 concentrations on
P2 in two gas mixtures was investigated as well; however, no
mutual effects on the measured QEPAS signals were observed.

Therefore, both spectral interferences and matrix effects were
observed in the analyzed gas samples, thus requiring a suitable
analysis tool capable of filtering them out.

4. PARTIAL LEAST-SQUARES REGRESSION IN GAS
SPECTROSCOPY: FUNDAMENTALS

PLSR is a multivariate analysis (MVA) technique, commonly
employed to handle noise, missing values, and correlations
among nominally independent variables belonging to relatively
small datasets.38 Recently, PLSR has been effectively employed
as an analysis tool for filtering out mutual spectral interferences
and matrix effects in PAS.19,30,34,40 This technique is based on
a simple regression model, which reads in matrix form:

= +Y XB E (2)

where X is the predictor matrix, Y is the response matrix, B is
the regression coefficient matrix, and E is the residual (or
error) matrix.39 In optical spectroscopy, the rows of the X
matrix consist of the acquired spectra, while the nominal
concentrations of the mixtures are the rows of the Y matrix.
During the training step of the algorithm,19,32 the regression
coefficient matrix is retrieved by maximizing the covariance
matrix cov(X,Y), with the only assumption that the analyzed
system can be described in terms of a small subset of truly

Figure 3. Calibration curves of (a) C1 performed on the P1 peak in the 0.99−9.85% concentration range; (b) C2 performed on the P2 peak in the
0.10−1.00% concentration range; (c) C3 performed on the P3 peak in the 0.10−1.00% concentration range. In each case, an exponential fit (solid
red line) is superimposed on the experimental points.

Table 1. Parameters Defining the Exponential Fit
Superimposed to the Single Analyte Calibrations Performed
on C1, C2, and C3

A (mV) B (10−4 ppm−1) y0 (mV)

C1 −192.46 ± 47.27 −4.84 ± 1.51 193.96 ± 47.95
C2 −498.10 ± 49.04 −32.19 ± 3.72 498.82 ± 49.33
C3 −27.12 ± 2.64 −81.80 ± 12.02 27.36 ± 2.73
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independent variables or “latent variables” (LVs).39,41 From
this point of view, PLSR involves the projection to a latent
structure of the original system, meaning that the analysis is
performed in a subspace of the original wavelength space with
a reduced dimensionality, given by the number of LVs.42 The
assessment of the optimal LV number is crucial to avoid
possible under- or overfittings of the model, and it is typically
carried out by employing two figures of merit: the explained
variance maximization and the cross-validation (CV) algo-
rithm.43

One of the main advantages of the PLSR approach, when
applied to PAS, is the possibility of accurately retrieving the
concentration of each analyte within a complex gas mixture by
only analyzing the cross-correlations among different wave-
lengths of the same spectrum. Indeed, there is no need for an a
priori knowledge of the photoacoustic relaxation cascade
dynamics, contrarily to other methods relying on the
calculation of the full relaxation cascade, which may lose
their effectiveness when the matrix complexity in-
creases.30−32,40

5. PLSR ANALYSIS: ALGORITHM TRAINING AND TEST
The input data set of the PLSR algorithm was built acquiring
71 spectra with different sample compositions, including 2-
and 3-gas mixtures (i.e., C1−C2, C1−C3, C2−C3, and C1−
C2−C3) in nitrogen. The concentration ranges considered for
the data analysis process are 7.0−9.0% for C1 and 0.1−1.0%
for C2 and C3. Each spectrum includes 346 data points, with a
spectral sampling of ∼0.0095 cm−1 (Figure 2).

A 10-fold cross-validation (CV) algorithm was applied to the
full data set to determine the optimal number of LVs for the
subsequent PLS analysis. Both the explained variance and the
root-mean-square error of cross validation (RMSECV) were
evaluated for each LV, as shown in Figure 5a,b, respectively.

As it can be noticed, the RMSECV is minimized for three
LVs, remaining substantially constant for a higher number of
PLS components. At the same time, the explained variance is
first maximized for three LVs, although it increases significantly
up to six LVs, which was selected as the optimal number of
components for analysis. Indeed, a higher number of PLS
components would lead to only negligible increments. Even
though the entire analysis process does not provide a physical

Figure 4. P1 peak QEPAS signal for a fixed concentration of methane ranging from 7.00 to 9.00% when varying the (a) C2 and (b) C3
concentrations within two gas mixtures.

Figure 5. (a) Explained variance and (b) root-mean-square error of cross validation (RMSECV) evaluated for each LV (or PLS component) up to
10 employing the full input dataset. The selected number of LVs is 6, as highlighted by the red circle.
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Figure 6. Outcome of the PLSR algorithm for (a) C1; (b) C2; and (c) C3 for a representative test set. For each analyte, the RMSEC, the RMSEP,
and the AREP are displayed.

Table 2. Predicted and Expected Concentrations for Each Analyte and Each Test Set

C1 C2 C3

expected (%) predicted (%) expected (%) predicted (%) expected (%) predicted (%)

test set #1 7.96 ± 0.18 7.96 ± 0.17 0.40 ± 0.01 0.41 ± 0.01 0 0.04 ± 0.03
6.97 ± 0.16 7.21 ± 0.17 0.30 ± 0.01 0.28 ± 0.01 0.63 ± 0.01 0.64 ± 0.03
7.46 ± 0.17 7.43 ± 0.17 0.70 ± 0.02 0.71 ± 0.01 0.23 ± 0.01 0.22 ± 0.03
8.46 ± 0.19 8.48 ± 0.17 0.62 ± 0.01 0.61 ± 0.01 0.30 ± 0.01 0.33 ± 0.03

test set #2 7.96 ± 0.18 7.85 ± 0.16 0.20 ± 0.01 0.18 ± 0.01 0 0.03 ± 0.03
6.97 ± 0.16 7.28 ± 0.16 0.10 ± 0.01 0.11 ± 0.01 0.83 ± 0.02 0.80 ± 0.03
7.46 ± 0.17 7.74 ± 0.16 0.40 ± 0.01 0.38 ± 0.01 0.53 ± 0.01 0.51 ± 0.03
8.96 ± 0.20 9.47 ± 0.16 0.71 ± 0.02 0.72 ± 0.01 0.20 ± 0.01 0.26 ± 0.03

test set #3 7.46 ± 0.17 7.36 ± 0.17 0.25 ± 0.01 0.23 ± 0.01 0.68 ± 0.02 0.69 ± 0.03
7.96 ± 0.18 7.93 ± 0.17 0.55 ± 0.01 0.54 ± 0.01 0.37 ± 0.01 0.37 ± 0.03
8.46 ± 0.19 8.02 ± 0.17 0.82 ± 0.02 0.81 ± 0.01 0.10 ± 0.01 0.08 ± 0.03
8.96 ± 0.20 8.92 ± 0.17 0.06 ± 0.01 0.06 ± 0.01 0.85 ± 0.02 0.83 ± 0.03

test set #4 6.97 ± 0.16 6.69 ± 0.16 0.93 ± 0.02 0.94 ± 0.01 0 −0.05 ± 0.03
7.46 ± 0.17 7.57 ± 0.16 0.40 ± 0.01 0.38 ± 0.01 0.53 ± 0.01 0.52 ± 0.03
7.96 ± 0.18 7.95 ± 0.16 0.75 ± 0.02 0.74 ± 0.01 0.17 ± 0.01 0.21 ± 0.03
8.96 ± 0.20 8.77 ± 0.16 0.21 ± 0.01 0.20 ± 0.01 0.70 ± 0.02 0.73 ± 0.03

test set #5 8.96 ± 0.20 9.14 ± 0.16 0.60 ± 0.01 0.60 ± 0.01 0 −0.01 ± 0.03
6.97 ± 0.16 6.87 ± 0.16 0.80 ± 0.02 0.80 ± 0.01 0.13 ± 0.01 0.13 ± 0.03
7.96 ± 0.18 7.64 ± 0.16 0.20 ± 0.01 0.19 ± 0.01 0.72 ± 0.02 0.69 ± 0.03
8.46 ± 0.19 8.62 ± 0.16 0.12 ± 0.01 0.14 ± 0.01 0.80 ± 0.02 0.77 ± 0.03
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interpretation of the LVs, it is still possible to interpret them in
a qualitative way as independent contributions to the QEPAS
spectra. Namely, the first three of them may be considered as
the independent contributions of the three analytes composing
the mixtures; the others may be considered as the matrix
effects related to (i) the photoacoustic relaxation of C1
through C2, (ii) the photoacoustic relaxation of C1 through
C3, and (iii) the self-relaxation of each analyte, which may be
assumed to become relevant in the explored concentration
ranges.19

The PLSR analysis was carried out by means of a MATLAB-
based algorithm, splitting the acquired dataset into a training
set and a test set. The two sets are then employed to calibrate
and test the model, respectively. The coefficient matrix
retrieved from the calibration step (see eq 2) is employed to
predict the C1, C2, and C3 concentrations of the
corresponding test set. Five independent test sets were
assembled, each one consisting of four spectra randomly
picked from the full dataset. For each test set, the root-mean-
square error of calibration (RMSEC, %) and root mean square
error of prediction (RMSEP, %) were evaluated together with
the average relative error of prediction (AREP, % rel). The
RMSEC parameter provides quantitative information about
the algorithm calibration, thus returning information on its
precision, while the RMSEP parameter provides information
about the discrepancy between the expected values and the
obtained results, thus returning information about its
accuracy.44 The results of the calibration and the test step of
the PLSR analysis for a representative test set are shown in
Figure 6a−c for C1, C2, and C3, respectively. The expected
and predicted concentrations calculated for each test set are
reported in Table 2, together with their uncertainties. The
uncertainty on the expected concentration has been evaluated
starting from the expanded uncertainty on the gas cylinders
and the relative uncertainty on the dilution (1%), while the
RMSEC has been adopted as the uncertainty on the predicted
concentrations.

The data collected as the outcome of the algorithm display a
clear linear trend for each analyte, and the superimposed linear
fits always fall close to the bisector of the plane, as expected,
with an R2 value always higher than 0.990. Furthermore, the
significant decrease in the relative prediction accuracy observed
on C3 with respect to the other two analytes can be attributed
to the lower number of C3 absorption features within the
targeted spectral range as well as to the lower signal-to-noise
ratio (SNR) of the C3 QEPAS signals, as can be noticed from
the acquired spectra (e.g., Figure 2). Therefore, it can be
inferred that a low SNR induces a degradation of the PLSR
algorithm prediction accuracy with respect to one or more
analytes composing the gas mixture.

From Table 2, it can be noticed that the RMSEC varies
between 0.16% and 0.17% for C1 and 0.01% and 0.02% for C2
and C3 when changing the test set removed from the full
dataset. This proves that both the calibration and the
validation steps are unbiased. Furthermore, the predicted and
expected concentrations are compatible within their uncer-
tainties (1σ), with only a few minor exceptions.

The mean RMSEC, RMSEP, and AREP evaluated over all
five test sets are reported in Table 3. The average AREP values
point out an algorithm accuracy of ∼98%, ∼96%, and ∼93%
for C1, C2, and C3 concentration predictions, respectively. It is
worth noting that varying the number of LVs in a
neighborhood of 6 does not lead to substantial variations of

the average AREP values, hence confirming the validity of the
choice.

6. CONCLUSIONS
In this work, a compact and portable QEPAS sensor for in situ
and real-time detection of light alkanes, namely, C1, C2, and
C3, in natural gas-like mixtures is presented. The sensor
consists of a 19″-diagonal aluminum rack box, enclosing the
sensor head, the electronics, and the gas handling system.
Natural gas component analysis has been carried out in the
laboratory generating mixtures of C1 (7.00−9.00%), C2 (0−
1.00%), and C3 (0−1.00%) in nitrogen, starting from certified
cylinders. PLSR analysis has been implemented by means of a
MATLAB-based code to filter out both spectral interferences
and matrix effects observed in the acquired QEPAS spectra,
thus allowing the retrieval of C1, C2, and C3 concentrations
with an accuracy of ∼98%, ∼96%, and ∼93%, respectively.
These results mark a significant improvement with respect to
the previously reported demonstrations of QEPAS sensors for
natural gas analysis from the point of view of19,23 (i) the
applicability of the multivariate approach to complex and
highly variable NG gas matrices, (ii) the prediction accuracy,
and (ii) the capability to detect and discriminate C3 within
natural gas-like complex mixtures.

Further developments of this technology will be focused on
field testing the sensor prototype and extending the detection
of the natural gas components to the heavier alkanes, i.e., C4,
C5, and C6, as well as to the nonhydrocarbon components,
e.g., carbon dioxide and hydrogen sulfide. Indeed, these
features would translate into more accurate, continuous, and
reliable assessment of the most relevant gases at various stages
in oil and gas operations, from exploration, drilling, and
production to hydrocarbon processing and distribution.
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ADM &#x2013;acoustic detection module
AR &#x2013;acoustic resonator
C1 &#x2013;methane
C2 &#x2013;ethane
C3 &#x2013;propane
C4 &#x2013;butane
C5 &#x2013;pentane
FID &#x2013;flame ionization detector
GC &#x2013;gas chromatograph
GHG &#x2013;greenhouse gas
MS &#x2013;mass spectrometry
NG &#x2013;natural gas
MVA &#x2013;multivariate analysis
PLSR &#x2013;partial least-squares regression
QEPAS &#x2013;quartz-enhanced photoacoustic spectros-
copy
QTF &#x2013;quartz tuning fork
SMR &#x2013;steam methane reforming

■ REFERENCES
(1) McKinney, D.; Flannery, M.; Elshahawi, H.; Stankiewicz, A.;

Clarke, E.; Breviere, J.; Sharma, S. In Advanced Mud Gas Logging in
Combination with Wireline Formation Testing and Geochemical
Fingerprinting for an Improved Understanding of Reservoir Architecture,
SPE Annual Technical Conference and Exhibition, SPE-109861; SPE:
Anaheim, California, USA, 2007.

(2) Caroli, E.; Lafaurie, C.; Barraud, B.; Ségalini, G. In Quantitative
Mud Gas Reconciliation with Downhole Fluid Analysis: towards a
Quantitative Fluid Log, SPE Annual Technical Conference and
Exhibition, D021S019R003; SPE: New Orleans, Louisiana, USA,
2013.

(3) Pixler, B. O. Formation evaluation by analysis of hydrocarbon
ratios. J. Pet. Technol. 1969, 21 (06), 665−670.

(4) Haworth, J. H.; Sellens, M.; Whittaker, A. Interpretation of
hydrocarbon shows using light (C1-C5) hydrocarbon gases from
mud-log data. AAPG Bull. 1985, 69 (8), 1305−1310.

(5) Devold, H. Oil and Gas Production Handbook: an Introduction to
Oil and Gas Production; Lulu. Com., 2013.

(6) Jaeschke, M.; Schley, P.; Janssen−van Rosmalen, R. Thermody-
namic research improves energy measurement in natural gas. Int. J.
Thermophys. 2002, 23, 1013−1031.

(7) Baylis, S. A.; Hall, K.; Jumeau, E. J. The analysis of the C1−C5
components of natural gas samples using gas chromatography-
combustion-isotope ratio mass spectrometry. Org. Geochem. 1994,
21 (6−7), 777−785.

(8) Chromatographic Analysis of the Environment, 3rd ed.; Nollet, L.
M. L., Ed.; CRC Press, 2006.

(9) Makhoukhi, N.; Péré, E.; Creff, R.; Pouchan, C. Determination
of the composition of a mixture of gases by infrared analysis and
chemometric methods. J. Mol. Struct. 2005, 744−747, 855−859.

(10) Dettmer-Wilde, K.; Engewald, W. Practical Gas Chromatog-
raphy; Springer: Berlin, Heidelberg, 2014.

(11) Jin, T.; Zhou, J.; Lin, P. T. Real-time and non-destructive
hydrocarbon gas sensing using mid-infrared integrated photonic
circuits. RSC Adv. 2020, 10 (13), 7452−7459.

(12) Zifarelli, A.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Gonzalez,
M.; Wu, H.; Dong, L.; Spagnolo, V. Methane and ethane detection
from natural gas level down to trace concentrations using a compact
mid-IR LITES sensor based on univariate calibration. Photoacoustics
2023, 29, No. 100448.

(13) Soskind, M. G.; Li, N. P.; Moore, D. P.; Chen, Y.; Wendt, L. P.;
McSpiritt, J.; Zondlo, M. A.; Wysocki, G. Stationary and drone-
assisted methane plume localization with dispersion spectroscopy.
Remote Sens. Environ. 2023, 289, No. 113513.

(14) Correa Pabón, R. E.; de Souza Filho, C. R.; de Oliveira, W. J.
Reflectance and imaging spectroscopy applied to detection of
petroleum hydrocarbon pollution in bare soils. Sci. Total Environ.
2019, 649, 1224−1236.

(15) Wang, Z.; Wang, Q.; Zhang, H.; Borri, S.; Galli, I.; Sampaolo,
A.; Ren, W.; et al. Doubly resonant sub-ppt photoacoustic gas
detection with eight decades dynamic range. Photoacoustics 2022, 27,
No. 100387.

(16) Patimisco, P.; Scamarcio, G.; Tittel, F. K.; Spagnolo, V. Quartz-
enhanced photoacoustic spectroscopy: a review. Sensors 2014, 14 (4),
6165−6206.

(17) Ma, Y. Review of recent advances in QEPAS-based trace gas
sensing. Appl. Sci. 2018, 8 (10), 1822.

(18) Sampaolo, A.; Menduni, G.; Patimisco, P.; Giglio, M.; Passaro,
V. M.; Dong, L.; Spagnolo, V.; et al. Quartz-enhanced photoacoustic
spectroscopy for hydrocarbon trace gas detection and petroleum
exploration. Fuel 2020, 277, No. 118118.

(19) Menduni, G.; Zifarelli, A.; Sampaolo, A.; Patimisco, P.; Giglio,
M.; Amoroso, N.; Spagnolo, V.; et al. High-concentration methane
and ethane QEPAS detection employing partial least squares
regression to filter out energy relaxation dependence on gas matrix
composition. Photoacoustics 2022, 26, No. 100349.

(20) Li, Y.; Wang, R.; Tittel, F. K.; Ma, Y. Sensitive methane
detection based on quartz-enhanced photoacoustic spectroscopy with
a high-power diode laser and wavelet filtering. Opt. Lasers Eng. 2020,
132, No. 106155.

(21) Li, C.; Dong, L.; Zheng, C.; Lin, J.; Wang, Y.; Tittel, F. K. Ppbv-
level ethane detection using quartz-enhanced photoacoustic spectros-
copy with a continuous-wave, room temperature interband cascade
laser. Sensors 2018, 18 (3), 723.

(22) THORLABS. QEPAS-CH4 - Quartz-Enhanced Photoacoustic
Sensor for Methane. https://www.thorlabs.com/thorproduct.
cfm?partnumber=QEPAS-CH4.

(23) Luo, P.; Harrist, J.; Menduni, G.; Mesdour, R.; StMichel, N.;
Sampaolo, A. Simultaneous detection of methane, ethane, and

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.4c03726
Energy Fuels XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pan+Luo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vincenzo+Spagnolo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Angelo+Sampaolo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3790-3767
https://orcid.org/0000-0003-3790-3767
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c03726?ref=pdf
https://doi.org/10.2118/2254-PA
https://doi.org/10.2118/2254-PA
https://doi.org/10.1023/A:1016385902427
https://doi.org/10.1023/A:1016385902427
https://doi.org/10.1016/0146-6380(94)90019-1
https://doi.org/10.1016/0146-6380(94)90019-1
https://doi.org/10.1016/0146-6380(94)90019-1
https://doi.org/10.1016/j.molstruc.2005.01.021
https://doi.org/10.1016/j.molstruc.2005.01.021
https://doi.org/10.1016/j.molstruc.2005.01.021
https://doi.org/10.1039/C9RA10058J
https://doi.org/10.1039/C9RA10058J
https://doi.org/10.1039/C9RA10058J
https://doi.org/10.1016/j.pacs.2023.100448
https://doi.org/10.1016/j.pacs.2023.100448
https://doi.org/10.1016/j.pacs.2023.100448
https://doi.org/10.1016/J.RSE.2023.113513
https://doi.org/10.1016/J.RSE.2023.113513
https://doi.org/10.1016/J.SCITOTENV.2018.08.231
https://doi.org/10.1016/J.SCITOTENV.2018.08.231
https://doi.org/10.1016/j.pacs.2022.100387
https://doi.org/10.1016/j.pacs.2022.100387
https://doi.org/10.3390/s140406165
https://doi.org/10.3390/s140406165
https://doi.org/10.3390/app8101822
https://doi.org/10.3390/app8101822
https://doi.org/10.1016/j.fuel.2020.118118
https://doi.org/10.1016/j.fuel.2020.118118
https://doi.org/10.1016/j.fuel.2020.118118
https://doi.org/10.1016/j.pacs.2022.100349
https://doi.org/10.1016/j.pacs.2022.100349
https://doi.org/10.1016/j.pacs.2022.100349
https://doi.org/10.1016/j.pacs.2022.100349
https://doi.org/10.1016/j.optlaseng.2020.106155
https://doi.org/10.1016/j.optlaseng.2020.106155
https://doi.org/10.1016/j.optlaseng.2020.106155
https://doi.org/10.3390/s18030723
https://doi.org/10.3390/s18030723
https://doi.org/10.3390/s18030723
https://doi.org/10.3390/s18030723
https://www.thorlabs.com/thorproduct.cfm?partnumber=QEPAS-CH4
https://www.thorlabs.com/thorproduct.cfm?partnumber=QEPAS-CH4
https://doi.org/10.1021/acsomega.1c05645?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.4c03726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


propane by QEPAS sensors for on-site hydrocarbon characterization
and production monitoring. ACS Omega 2022, 7 (4), 3395−3406.

(24) Kosterev, A. A.; Bakhirkin, Y. A.; Curl, R. F.; Tittel, F. K.
Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27
(21), 1902−1904.

(25) Barreiro, N.; Vallespi, A.; Santiago, G.; Slezak, V.; Peuriot, A.
Influence of oxygen on the resonant photoacoustic signal from
methane excited at the ν3 mode. Appl. Phys. B 2011, 104, 983−987.

(26) Barreiro, N.; Peuriot, A.; Santiago, G.; Slezak, V. Water-based
enhancement of the resonant photoacoustic signal from methane−air
samples excited at 3.3 μm. Appl. Phys. B 2012, 108, 369−375.

(27) Barreiro, N.; Peuriot, A.; Slezak, V.; Santiago, G. Study of the
dependence of the photoacoustic signal amplitude from methane on
different collisional partners. Vib. Spectrosc. 2013, 68, 158−161.

(28) Rousseau, R.; Maurin, N.; Trzpil, W.; Bahriz, M.; Vicet, A.
Quartz tuning fork resonance tracking and application in quartz
enhanced photoacoustics spectroscopy. Sensors 2019, 19 (24), 5565.

(29) Sampaolo, A.; Patimisco, P.; Giglio, M.; Zifarelli, A.; Wu, H.;
Dong, L.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy
for multi-gas detection: A review. Anal. Chim. Acta 2022, 1202,
No. 338894.

(30) Zifarelli, A.; Cantatore, A. F. P.; Sampaolo, A.; Mueller, M.;
Rueck, T.; Hoelzl, C.; Spagnolo, V.; et al. Multivariate analysis and
digital twin modelling: Alternative approaches to evaluate molecular
relaxation in photoacoustic spectroscopy. Photoacoustics 2023, 33,
No. 100564.

(31) Müller, M.; Rück, T.; Jobst, S.; Pangerl, J.; Weigl, S.; Bierl, R.;
Matysik, F. M. An algorithmic approach to compute the effect of non-
radiative relaxation processes in photoacoustic spectroscopy. Photo-
acoustics 2022, 26, No. 100371.

(32) Pangerl, J.; Müller, M.; Rück, T.; Weigl, S.; Bierl, R.
Characterizing a sensitive compact mid-infrared photoacoustic sensor
for methane, ethane and acetylene detection considering changing
ambient parameters and bulk composition (N2, O2 and H2O). Sens.
Actuators, B 2022, 352, No. 130962.

(33) Boudon, V.; Rey, M.; Loëte, M. The vibrational levels of
methane obtained from analyses of high-resolution spectra. J. Quant.
Spectrosc. Radiat. Transfer 2006, 98 (3), 394−404.

(34) Zifarelli, A.; Giglio, M.; Menduni, G.; Sampaolo, A.; Patimisco,
P.; Passaro, V. M.; Spagnolo, V.; et al. Partial least-squares regression
as a tool to retrieve gas concentrations in mixtures detected using
quartz-enhanced photoacoustic spectroscopy. Anal. Chem. 2020, 92
(16), 11035−11043.

(35) THORLABS. ADM01 - Acoustic Detection Module for
Q E P A S . H t t p s : / / W w w . T h o r l a b s . C o m / T h o r p r o d u c t .
Cfm?Partnumber=ADM01.

(36) Patimisco, P.; Sampaolo, A.; Bidaux, Y.; Bismuto, A.; Scott, M.;
Jiang, J.; Spagnolo, V.; et al. Purely wavelength-and amplitude-
modulated quartz-enhanced photoacoustic spectroscopy. Opt. Express
2016, 24 (23), 25943.

(37) Gordon, I. E.; Rothman, L. S.; Hargreaves, E. R.; Hashemi, R.;
Karlovets, E. V.; Skinner, F. M.; Yurchenko, S. N.; et al. The
HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc.
Radiat. Transfer 2022, 277, No. 107949.

(38) VPL Molecular Spectroscopic Database. https://vpl.astro.
washington.edu/spectra/.

(39) Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: a basic
tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58 (2), 109−
130.

(40) Loh, A.; Wolff, M. Multivariate analysis of photoacoustic
spectra for the detection of short-chained hydrocarbon isotopologues.
Molecules 2020, 25 (9), 2266.

(41) Kvalheim, O. M. Interpretation of direct latent-variable
projection methods and their aims and use in the analysis of
multicomponent spectroscopic and chromatographic data. Chemom.
Intell. Lab. Syst. 1988, 4 (1), 11−25.

(42) Abdi, H. Partial least squares regression and projection on
latent structure regression (PLS Regression). Wiley Interdiscip. Rev.:
Comput. Stat. 2010, 2 (1), 97−106.

(43) Olivieri, A. C. Introduction to Multivariate Calibration; Springer
International Publishing: Cham, 2018.

(44) Barra, I.; Kharbach, M.; Qannari, E. M.; Hanafi, M.; Cherrah,
Y.; Bouklouze, A. Predicting cetane number in diesel fuels using FTIR
spectroscopy and PLS regression. Vib. Spectrosc. 2020, 111,
No. 103157.

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.4c03726
Energy Fuels XXXX, XXX, XXX−XXX

I

https://doi.org/10.1021/acsomega.1c05645?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c05645?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1364/OL.27.001902
https://doi.org/10.1007/s00340-011-4546-8
https://doi.org/10.1007/s00340-011-4546-8
https://doi.org/10.1007/s00340-012-5018-5
https://doi.org/10.1007/s00340-012-5018-5
https://doi.org/10.1007/s00340-012-5018-5
https://doi.org/10.1016/j.vibspec.2013.07.005
https://doi.org/10.1016/j.vibspec.2013.07.005
https://doi.org/10.1016/j.vibspec.2013.07.005
https://doi.org/10.3390/s19245565
https://doi.org/10.3390/s19245565
https://doi.org/10.1016/j.aca.2021.338894
https://doi.org/10.1016/j.aca.2021.338894
https://doi.org/10.1016/j.pacs.2023.100564
https://doi.org/10.1016/j.pacs.2023.100564
https://doi.org/10.1016/j.pacs.2023.100564
https://doi.org/10.1016/j.pacs.2022.100371
https://doi.org/10.1016/j.pacs.2022.100371
https://doi.org/10.1016/j.snb.2021.130962
https://doi.org/10.1016/j.snb.2021.130962
https://doi.org/10.1016/j.snb.2021.130962
https://doi.org/10.1016/j.jqsrt.2005.06.003
https://doi.org/10.1016/j.jqsrt.2005.06.003
https://doi.org/10.1021/acs.analchem.0c00075?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c00075?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c00075?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://Https://Www.Thorlabs.Com/Thorproduct.Cfm?Partnumber=ADM01
http://Https://Www.Thorlabs.Com/Thorproduct.Cfm?Partnumber=ADM01
https://doi.org/10.1364/oe.24.025943
https://doi.org/10.1364/oe.24.025943
https://doi.org/10.1016/j.jqsrt.2021.107949
https://doi.org/10.1016/j.jqsrt.2021.107949
https://vpl.astro.washington.edu/spectra/
https://vpl.astro.washington.edu/spectra/
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.3390/molecules25092266
https://doi.org/10.3390/molecules25092266
https://doi.org/10.1016/0169-7439(88)80009-1
https://doi.org/10.1016/0169-7439(88)80009-1
https://doi.org/10.1016/0169-7439(88)80009-1
https://doi.org/10.1002/wics.51
https://doi.org/10.1002/wics.51
https://doi.org/10.1016/j.vibspec.2020.103157
https://doi.org/10.1016/j.vibspec.2020.103157
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.4c03726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

