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A B S T R A C T

We report on a quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for ammonia impurities detection in 
hydrogen. A quantum cascade laser with a central emission wavelength of 9.062 μm was used to excite the NH3 
absorption line at 1103.44 cm− 1, with a linestrength of 1.51⋅10− 19 cm/molecule. Compared to detecting con-
taminants in ambient air, the distinct properties of hydrogen required the design of a dedicated QEPAS spec-
trophone optimized for operation in hydrogen-based mixtures. The custom-made spectrophone was composed by 
a QTF excited at the first overtone mode at 44 kHz, acoustically coupled with an easy-to-align, dual-tube 
amplification system. The custom-made spectrophone was implemented in a QEPAS sensor, achieving a mini-
mum detection limit of 95 ppb with a lock-in integration time of 0.1 s. Furthermore, the Allan-Werle deviation 
analysis returned a detection limit as low as 1.5 ppb when for an integration time of 30 s.

1. Introduction

Hydrogen is currently one of the most studied energy sources for its 
sustainable properties and for its capability to efficiently replace tradi-
tional sources in energy production industry [1]. In particular, H2 
employed in fuel cells (FCs) does not produce greenhouse gases after its 
combustion, but in the process of preparing hydrogen, a variety of im-
purity gases could be produced [2]. Indeed, to ensure the performance of 
FCs, the hydrogen fuel quality standard set by ISO 14687:2019 specifies 
maximum allowable levels for 14 impurity gas molecules, including 
carbon monoxide, carbon dioxide, formaldehyde [3,4]. For example, the 
ammonia produced during hydrogen preparation and the NH3 traces 
formed by the reaction of internal hydrogen and nitrogen during FCs 
operation could even poison the FCs [5]. Francisco A. Uribe et al.[6]
found that when hydrogen containing 13 ppm ammonia impurities is 
filled into the fuel cells for 1 h, FCs performance gradually decreases. 
However, they can be fully recovered after 12 h, refilling FCs with pure 

H2. Conversely, when the NH3 impurity concentration reaches 30 ppm 
and the exposure time exceeded 15 h, the performances could not be 
restored to the original state within a few days, even refilling FCs with 
pure hydrogen. Therefore, the detection of traces of ammonia in 
hydrogen matrix is of great significance.

In recent years, ammonia impurities in H2 have been detected mainly 
with Fourier transform infrared spectrometers, semiconductor devices 
or gas chromatographs [7–9]. However, these sensors are bulky and not 
suitable for exposure at high H2 concentration, limiting the feasibility of 
in-situ detection and the operation in corrosive, reactive and dusty gas 
streams [10,11]. Recently, several laser-based optical techniques have 
been employed to measure NH3 in real world applications, thus over-
coming the abovementioned limits and at the same time achieving high 
sensitivity. In Ref. [12], a direct absorption spectroscopy apparatus was 
employed for in-situ and simultaneous detection of ammonia for selec-
tive catalytic reduction exhaust monitoring. A commercial analyser 
based on the cavity ring-down spectroscopy allowed the monitoring of 
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NH3 emissions in metropolitan areas, as described in Ref. [13]. Finally, 
the results shown in Ref. [14] are promising for measuring ammonia 
levels with tunable diode laser absorption spectroscopy in flue gas 
treatments processes. Although the reported examples have not been 
directly tested in hydrogen-based matrix, the architecture of the sensing 
system can be easily adapted for this task. Furthermore, also optical 
sensor based on Quartz enhanced photoacoustic spectroscopy (QEPAS) 
can overcome these issues [15–18]. This technique can be used to detect 
traces of NH3 in H2 matrix by exploiting the photoacoustic effect: when 
intensity-modulated light is tuned to a wavelength that matches a 
radiative transition of NH3, sound waves can be generated within the H2 
matrix. This occurs due to the non-radiative relaxation of excited NH3 
molecules, which transfer energy to collisional H2 neighbors. In QEPAS, 
these sound waves are detected by a spectrophone, composed by a 
quartz tuning fork (QTF) and a pair of resonator tubes, fully immersed in 
the gas mixture [19]. QEPAS sensors have already demonstrated high 
performance in trace gas detection within N2 and ambient environ-
ments. With their fast response and small footprint, they have become 
effective tools for real-time and in situ trace gas detection in different 
industrial applications [20–25]. The potentiality of the extension of the 
QEPAS technique for trace gas detection in H2 environments stems 
directly from its fundamental detection principle. The signal is gener-
ated by deformations of the QTF prongs due to the impact of sound 
waves. In other words, the QTF works as a passive detector, namely 
without need for external polarization, avoiding the risk of generating 
uncontrolled electrical discharges within the gas sample. This, combined 
with quartz’s resistance to corrosion in high-concentration hydrogen 
environments, allows QEPAS to be safely used for detecting contami-
nants in H2 environments. Also, when a QTF vibrates in hydrogen, it can 
achieve a significantly higher quality factor compared to standard air or 
nitrogen environments. This increase in quality factor is largely due to 
the lower density of hydrogen, which results in reduced damping forces 
on the vibrating QTF. Consequently, this enhanced vibrational efficiency 
in H2 could lead to improved sensitivity and performance.

In this work, we report on a QEPAS sensor for detection of NH3 in H2. 
The NH3 absorption feature at 1103.44 cm− 1 with a linestrength of 
1.51⋅10− 19 cm/molecule was excited by a quantum cascade laser (QCL) 
[26]. A comprehensive investigation revealed the inefficiency of the 
commercially available spectrophone, which consists of a T-shaped QTF 
with a fundamental resonance frequency of 12.4 kHz, coupled with two 
resonator tubes measuring 1.24 cm in length. This configuration rep-
resents a state-of-the-art spectrophone widely used for trace gas detec-
tion in nitrogen-based environments [27,28]. We demonstrated that the 
different sound speed in H2 with respect to N2 necessitates a re-design of 
the spectrophone, with the need to operate at a higher resonance fre-
quency by exciting the first overtone mode of a custom-made QTF. This 
enables the use of optimized tubes with a practical length of approxi-
mately ~ 1 cm, allowing for detection performance of NH3 in H2 to 
match that expected in an N2 environment.

2. Experimental setup

The QEPAS sensor for detection of NH3 in H2 is reported in Fig. 1. A 
distributed-feedback QCL (Thorlabs, Model QD9062HH) with a central 
emission wavelength of 9.062 μm was used to excite NH3 molecules. The 
NH3 absorption line at 1103.44 cm− 1 was targeted by setting the QCL 
temperature to 41◦C and injecting a current of 392.4 mA by using a 
Thorlabs combo-controller (Model ITC4002QCL). Under these operating 
conditions, an emission power of 39.8 mW was measured at the exit of 
the QCL. A ZnSe lens with a focal length of 50 mm was used to focus the 
collimated laser beam into the Acoustic Detection Module (ADM), a 
stainless-steel chamber with two windows that houses the QEPAS 
spectrophone. The lens directs the laser beam through resonator tubes, 
focusing it between the prongs of the QTF without touching them. A 
power meter was employed to assist with the optical alignment. The 
function generator (Tektronix, Model AFG 31052) was used to supply 

sine and triangle waves, combined with an adder, that drives the QCL 
controller and modulate the injected current. In detail, the triangle wave 
allows the full scan of the NH3 absorption profile, while the sinewave 
enables the 2 f wavelength modulation spectroscopy (2f-WMS) detection 
scheme. This method requires setting the sinewave frequency to half of 
the resonance frequency fr of the QTF and demodulating the spec-
trophone signal at fr using a lock-in amplifier (Zurich Instruments, 
Model MFLI). The integration time of the lock-in amplifier (τ) was set to 
0.1 s and the signal acquisition time to 0.3 s. Finally, the flow conditions 
within the ADM were stabilized using a gas handling system composed 
of gas cylinders, a gas blender-pressure controller combo-unit (MCQ- 
INSTRUMENTS GM VACUUM 1.3) and a pump. For the QEPAS sensor 
calibration, a mixture of 13 ppm of NH3:H2 was diluted with a pure 
hydrogen cylinder. The gas blender was used to generate mixtures with 
different ammonia concentrations in hydrogen, as well as to stabilize the 
pressure and flow of the mixture within the ADM. All measurements 
were carried out at a flow rate of 50 sccm. This value was selected to 
ensure both minimal turbulence in the detection module [29] and 
reduced rise/decay time in sensor operation because of ammonia 
adsorption/desorption effects [30]. Using the experimental setup shown 
in Fig. 1, a rise time (10–90 %) of ~20 min was observed, while a decay 
time (90–10 %) of ~10 min was observed.

2.1. NH3 traces detected in H2-based mixtures using the state-of-the-art 
spectrophone

The state-of-the-art spectrophone (Thorlabs, ADM01) was first 
employed in the QEPAS sensor depicted in Fig. 1. It consists of a T- 
shaped QTF with a fundamental resonance frequency of 12.4 kHz 
coupled with a dual-tube amplification system. Each tube has a length of 
12.4 mm with an inner radius a = 0.8 mm, and it is positioned 150 µm 
far from the QTF surface and Fig. 2 shows the QEPAS spectral scan of the 
NH3 absorption profile acquired with the certified mixture of 13 ppm 
NH3 in H2 at a pressure of 100 Torr flowing through the ADM [31].

The shape of measured 2f-spectral scan is highly distorted and only 
faintly resembles the expected second-derivative of a Lorentzian func-
tion [32]. The observed spectral distortions cannot be attributed to 
spectral overlap with other absorption features, as the selected NH₃ line 
is well isolated from potential interferents, such as condensed water 
vapor in the gas line. Simulations of the NH₃ absorption feature at 
100 Torr further confirm the presence of a distinct, isolated peak [26]. 
Additionally, these distortions are not a result of fringes or artifacts 
typically associated with poor optical alignment or suboptimal laser 
beam quality, as spectral scans obtained with pure H₂ flow through the 

Fig. 1. Schematic of the QEPAS sensor for the detection of ammonia traces 
in hydrogen.
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ADM were background-free. Consequently, the deformations in the 
spectral scans are attributed to acoustic coupling effects between the 
tube resonator system and the QTF. The state-of-the-art spectrophone is 
assembled in an on-beam configuration, with the QTF positioned be-
tween the tubes. The acoustic amplification within tubes is most effec-
tive when the tube length is properly chosen, allowing multiple reflected 
waves from the ends of the resonator constructively interfere and form a 
standing wave acoustic pattern. Considering the open-end correction, 
the length of each tube (l) is correlated with the sound wavelength by 
the following [33]: 

l =
vs

2fr
−

16a
3π (1) 

where vs is the speed of sound in the environment. The tube length of the 
state-of-the-art spectrophone is optimized for operation in an ambient 
environment, resulting in l = 12.4 mm for a speed of sound vs = 343 m/s 
in air with fr = 12.4 kHz. Moving to hydrogen environment, the speed of 
sound increases to 1330 m/s at room temperature and atmospheric 
pressure [34]. Using Eq. (1), the optimal tube length results 54 mm for fr 
= 12.4 kHz, nearly 4 times the length of the tube in the state-of-the-art 
spectrophone. For this reason, we removed the resonator tubes from the 
spectrophone and only bare T-shaped QTF was employed as sound wave 
detector in the ADM.

The QEPAS spectral scan of the NH3 absorption feature was acquired 
at different pressures with the certified concentration of 13 ppm NH3:H2 
injected into the ADM at 50 sccm. The normalized peak value of each 
spectral scan was plotted as a function of the pressure in Fig. 3.

The strongest QEPAS signal was achieved at an operating pressure of 
300 Torr, where the QTF exhibited a resonance frequency of 12.457 kHz 
and a quality factor of 51300. The QEPAS sensor calibration was per-
formed by introducing various ammonia concentrations into the gas 
line. These concentrations were achieved by diluting the certified 
13 ppm NH3:H2 gas cylinder with pure hydrogen. The resulting QEPAS 
spectral scans are displayed in Fig. 4a, and the extracted peak values at 
different ammonia concentrations are plotted in Fig. 4b.

The comparison between the spectral scan shapes in Fig. 4a and that 
obtained using a state-of-the-art spectrophone (Fig. 2) confirms the 
initial hypothesis: the observed spectral distortion is primarily due to 
non-optical acoustic coupling between the tubes and the QTF, mainly 
resulting from the incorrect tube length. This is further evident in the 
peak values of the spectral scans. With a certified concentration of 
13 ppm of NH3 in H2, the bare T-shaped QTF yields a QEPAS peak signal 

of 2.7 mV (Fig. 4a). This is notably lower than the peak signal of 20 mV 
achieved with the state-of-the-art spectrophone (see Fig. 2) with the 
same mixture in the ADM. Consequently, the resonator tubes enhance 
the QEPAS signal by a factor of approximately 7.4, which is anyway 
significantly below the typical amplification achieved in air or N2 of 
around 60 [31]. However, for optimal performance, a QEPAS sensor 
should operate under conditions that enable a clear reconstruction of the 
absorption feature, free from distortions that can introduce fringe pat-
terns, as in Fig. 2. This is because such deformations can alter the peak 
value, which is the key parameter for determining trace gas concen-
trations in a matrix, as well as the ultimate detection limit of the sensor. 
Thus, we evaluated the ultimate performance of the QEPAS sensor 
employing the bare T-shaped QTF in the ADM. Considering the slope of 
the linear fit 0.23 mV/ppm (with R-square value of 0.97) in Fig. 4b, and 
a 1σ noise level of 0.16 mV (measured as the standard deviation of the 
QEPAS signal when pure hydrogen flows in the ADM) a minimum 
detection limit (MDL) of ~700 ppb was calculated. The long-term sta-
bility of the QEPAS sensor was assessed using the Allan-Werle deviation 
analysis. This measurement was performed flowing pure hydrogen in 
the ADM at a pressure of 300 Torr and setting the laser emission 
wavelength at the ammonia absorption peak. The obtained MDL in 
ppm-unit as a function of the lock-in integration time is shown in Fig. 5.

Aside from a slight increase at short integration times, the MDL 
follows the expected 1/√τ-like trend for τ > 1 s, up to 100 s where the 
sensor reaches an MDL of ~20 ppb [35].

2.2. NH3 traces detected in H2-based mixtures using the overtone mode of 
an I-shaped QTF

The design of a spectrophone optimized for use in hydrogen envi-
ronment can be derived by analyzing Eq. (1). For frequencies in the kHz 
range, the contribution of the second term can be disregarded, allowing 
us to omit the tube diameter from this discussion. With this assumption, 
the main constraint is given by the tube length, which must be limited to 
~ 1.5 centimeters to facilitate the optical alignment. This means that the 
resonance frequency must be adjusted when the speed of sound, or the 
surrounding environment, varies in the ADM. Starting from the tube 
length l = 1.24 cm of the state-of-the-art spectrophone, a QTF with a 
resonance frequency of ~48 kHz must be used, 3.9 times higher than of 
the T-shaped QTF, exactly as the ratio between the speed of sound in 
hydrogen and that in the air. To demonstrate our assumptions, among all 
the custom QTFs we previously employed in QEPAS sensors [36–38], we 
identified the QTF with rectangular prongs, labelled as QTF#2 in 

Fig. 2. QEPAS spectral scan of a mixture containing pure hydrogen (black 
curve) and 13 ppm NH3:H2 at 100 Torr (red curve), acquired with the state-of- 
the-art spectrophone (ADM01, Thorlabs).

Fig. 3. Normalized QEPAS signal peaks of 13 ppm NH3:H2 in the 50–700 Torr 
pressure range for the 12.4 kHz T-shaped QTF.
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Ref. [36]. This resonator has prongs length, thickness and spacing of 
10 mm, 0.9 mm and 0.8 mm, respectively, with a quartz crystal thick-
ness of 0.25 mm. The tuning fork exhibits a resonance frequency of the 
fundamental mode at 7.6 kHz and the first overtone mode resonance 
frequency of ~ 44 kHz [34].

Using Eq. (1), the optimal tube length is l44 kHz ~ 15.0 mm when the 
first overtone mode is excited. Thus, QTF#2 was coupled with the 
resonator tubes employed in the Thorlabs-ADM01 (inner diameter of 
1.6 mm and a length of 12.4 mm), in order to excite the upper antinode 
of the first overtone flexural mode of the QTF, mirroring the configu-
ration of the state-of-the-art spectrophone. This assembly will be named 
hereafter as custom-made spectrophone. A ~15 % difference in tube 
length from the optimal size is not expected to significantly affect the 
overall performance of the QEPAS sensor, as already demonstrated in 
previous works [31,39].

The custom-made spectrophone was mounted in the ADM to be used 
in the experimental setup of Fig. 1 for detecting NH3 trace in H2. Using 
the same procedure described before, the trend of the QEPAS peak signal 
of the NH3 absorption feature was analyzed at various pressures, as 
shown in Fig. 6.

The optimal pressure maximizing the QEPAS signal results 500 Torr, 
higher than the value found for the state-of-the-art spectrophone 
(300 Torr), with a resonance frequency and a quality factor of the 

spectrophone of 44.135 kHz and 43170, respectively. An increase of the 
optimal pressure is expected when shifting to higher frequencies. For 
optimal signal conditions, the excitation frequency should allow the 
excited NH₃ molecules to effectively transfer excess energy to sur-
rounding H₂ molecules. As the excitation frequency increases, a faster 
energy relaxation rate is required, meaning that a greater density of 
surrounding molecules—achieved through higher pressure—is neces-
sary to maintain efficient overall energy transfer[40].

The calibration of the sensor was carried out at 500 Torr: the QEPAS 
spectral scans for different ammonia concentrations in hydrogen and the 
extracted peak values as a function of ammonia concentration are re-
ported in Fig. 7a and 7b, respectively.

As expected, the 2f-scans do not exhibit any distortion, confirming 
that the acoustic coupling between QTF#2 and resonator tubes is 
optimal. Moreover, the linear fit of the datapoints in Fig. 7b returns a R- 
square value of 0.996, higher than that obtained with bare T-shaped 
QTF (0.97). Considering the slope 1.8 mV/ppm of the linear fit and a 1σ 
noise level of 0.17 mV, an MDL of ~95 ppb was achieved with 0.1 s lock- 
in integration time. This result can be qualitatively compared with the 
best achievement obtained with QEPAS for NH3 detection in N2 by 
targeting the same absorption line, reporting an MDL of 5.8 ppb [41]. 
The net comparison indicates a reduction in MDL by a factor of 

Fig. 4. (a) 2f-QEPAS signals collected under different concentrations of NH3 diluted in H2. (b) Calibration curve of the QEPAS sensor. The black dots represent the 
experimental data, the red line represents the linear fitting curve.

Fig. 5. Allan-Werle deviation analysis for the ammonia detection with the T- 
shaped QTF.

Fig. 6. Normalized QEPAS signal peaks of 13 ppm NH3:H2 in the 100–700 Torr 
pressure range measured exciting the first overtone mode of the custom-made 
spectrophone.
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approximately 16. Emphasizing the performance differences between 
the two QTFs helps to clarify much of this discrepancy. As detailed in 
Ref. 33, a thorough comparison of QEPAS performance across different 
QTFs reveals that the signal-to-noise ratio of a bare T-shaped QTF is 
approximately eight times higher than that of QTF#2 when operating in 
its fundamental mode. However, to fully account for the observed 
discrepancy, additional factors must be considered. When shifting from 
the fundamental mode to a high-frequency overtone mode (>40 kHz), 
the performance of a QTF in a QEPAS sensor generally declines. Addi-
tionally, the signal enhancement provided by resonator tubes varies 
between different QTF designs.

Finally, the long-term stability of the sensor was assessed with the 
Allan-Werle deviation analysis shown in Fig. 8.

The MDL has 1/√τ-like trend up to integration time of 30 s, with a 
corresponding detection limit of 1.5 ppb. The different behavior be-
tween Fig. 5 and Fig. 8 at integration times from 0.1 s up to 1 s is mainly 
due to the different response of the electronic components at the two 
resonance frequencies.

3. Conclusions

In this work, we developed a QEPAS sensor optimized for detecting 
trace ammonia (NH₃) in hydrogen (H₂)-based mixtures. Traditional 
spectrophones, designed for air-based environments, proved inadequate 
in hydrogen due to the significantly higher speed of sound, which dis-
rupts acoustic coupling with the QTF. Using an analytical model to 
examine acoustic interactions in hydrogen, we designed a spectrophone 
comprising a custom QTF operating at its first overtone mode (44 kHz) 
and coupling it with resonator tubes of 12.4 mm length, facilitating 
reliable optical alignment even with suboptimal laser beam quality. The 
optimized spectrophone achieved a minimum detection limit (MDL) of 
95 ppb for NH₃ in hydrogen at 500 Torr and with a 0.1 s integration 
time. Stability analysis via Allan-Werle deviation confirmed that the 
MDL could be further reduced to 1.5 ppb with a 30 s integration, 
highlighting the sensor’s stability and sensitivity. This advancement not 
only underscores the potential of QEPAS for hydrogen environments but 
also supports future custom QTF designs for sensitive gas trace detection 
in hydrogen and a deeper understanding of resonator acoustic coupling 
in H₂-based matrices. Additionally, this optimized approach could be 
extended to detect other contaminants specified in the ISO 14687:2019 
standard for hydrogen fuel purity [4]. Future research on ammonia 
detection will prioritize mitigating adsorption/desorption effects on the 
sensor walls. This will include examining the impact of varying flow 
rates on the QEPAS signal and developing experimental approaches to 
increase and stabilize the detection system temperature, ensuring ac-
curacy, and long-term reliability in diverse operating conditions.
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