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A B S T R A C T

We present a novel approach for gas concentration measurement using a differential resonant photoacoustic cell 
combined with a deep learning-based signal denoising model. This method addresses the persistent challenge of 
noise interference in 2 f signals at low gas concentrations, where conventional processing methods struggle to 
maintain signal fidelity. To resolve this, we propose a deep learning model that integrates 1D Convolutional 
Neural Networks (1D CNNs) for local feature extraction and Transformer networks for capturing global de
pendencies. The model was trained using synthetic signals with added noise to simulate real-world conditions, 
ensuring robustness and adaptability. Applied to experimental 2 f signals, the model demonstrated excellent 
noise suppression capabilities, enhancing the signal-to-noise ratio (SNR) of 500 ppb acetylene signals by a factor 
of approximately 70. Furthermore, the determination coefficient (R²) improved, reflecting better accuracy and 
linearity in signal reconstruction. These results underscore the model’s potential for improving detection 
sensitivity and reliability in trace gas measurements, marking a significant advancement in spectroscopic signal 
processing for gas detection.

1. Introduction

Trace gas sensing is essential for environmental monitoring, indus
trial processes, and medical diagnostics, as it enables the detection of 
trace gas concentrations that can profoundly impact health and safety 
[1–7]. Among various gas sensing technologies, laser spectroscopy has 
gained significant attention for its superior sensitivity, exceptional 
selectivity, and extended operational lifespan, making it a preferred 
choice for high-precision applications [8–10]. Photoacoustic 

spectroscopy, a specific type of laser spectroscopy, detects acoustic 
signals produced by the interaction of modulated laser light with gas 
molecules to determine gas concentrations [11–13]. This technique not 
only retains the advantages of laser spectroscopy—such as high sensi
tivity and selectivity—but also offers unique benefits, including zero 
background noise and a direct correlation between detection sensitivity 
and laser power [14–16]. These features have driven its rapid 
advancement and adoption in recent years [17–19]. However, signifi
cant challenges emerge when applying this technique to 
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low-concentration gases. The primary obstacle is the interference from 
various noise sources during measurement, including environmental 
noise (low-frequency), laser source noise (high-frequency), and thermal 
noise (Gaussian white noise). These noise components combined to 
produce a substantial background signal that can mask the weak pho
toacoustic signals at low gas concentrations, severely degrade the SNR 
and, in turn, the detection sensitivity. Consequently, mitigating or 
eliminating the noise impact to enhance detection performance remains 
a critical research focus and a major challenge in this field [20–23].

Deep learning, a cutting-edge technology in artificial intelligence, 
has shown remarkable potential in signal processing, particularly for 
signal denoising [24–32]. Unlike traditional denoising methods, deep 
learning techniques can automatically capture complex, nonlinear fea
tures within data, overcoming the limitations of manual feature 
extraction [33–36]. This ability is especially advantageous in high-noise 
environments and non-stationary signal scenarios [37]. End-to-end deep 
learning models can directly learn noise patterns and adapt to varying 
noise conditions, effectively filtering out unwanted signals while pre
serving essential signal features, thus significantly enhancing signal 
quality [38–40]. Furthermore, deep learning models exhibit strong 
generalization capabilities, allowing them to handle diverse noise types 
and signal variations, making them ideal for real-world applications [41, 
42]. These strengths provide innovative solutions to noise-related 
challenges in photoacoustic spectroscopy, enabling breakthrough im
provements in the detection and analysis of low-concentration gases 
[43,44].

In this study, we present a deep learning model that integrates 1D 
CNNs and Transformers (CTNN) to effectively denoise photoacoustic 
signals. 1D CNNs excel at extracting local features, such as peaks and 
valleys, which are critical for precise gas concentration measurements 
[36]. In parallel, Transformers are adept at capturing long-range de
pendencies, enabling the integration of global context to preserve the 
overall signal structure during denoising. By combining these comple
mentary strengths, the proposed model achieves significant enhance
ments in the SNR of low-concentration gas signals. This synergic 
approach not only improves denoising performance but also ensures 
high accuracy in gas detection. Notably, this work presents the first 
application of 1D CNNs and Transformers in tandem for photoacoustic 
spectroscopy, representing a novel contribution to the field and laying 
the foundation for further advancements in signal processing for trace 
gas detection [45–47].

This paper underscores the growing significance of deep learning in 
advancing signal processing techniques, particularly in addressing one 
of the most persistent challenges in photoacoustic spectroscopy: the 
accurate detection of low-concentration gases in high-noise environ
ments. Our research achieved a remarkable 70-fold improvement in the 
SNR of acetylene 2 f signals, alongside an enhancement in the R-squared 
value at low concentrations from 99.0 % to 99.3 %. Leveraging the 
unique capabilities of deep learning, combined with effective normal
ized preprocessing, our method demonstrates exceptional robustness 
and generalizability, making it suitable for denoising signals from other 
gas species. As deep learning technologies continue to evolve, their 
applications in scientific measurement and analysis are expected to 
expand, providing innovative and transformative solutions to long
standing challenges across various disciplines.

2. Algorithm design

2.1. Data preprocessing

2.1.1. Noise analysis
To train the deep learning model for denoising photoacoustic 

spectra, we employed theoretically simulated 2 f signals comprising 501 
sampling points. 501 sampling points were selected in this study to 
facilitate comparison between experimentally measured data and 
theoretical calculations. In future applications, the number of sampling 

points can be adjusted according to specific requirements. These signals 
are inherently smooth and free from noise artifacts. However, to emulate 
real-world experimental conditions and ensure the model’s ability to 
effectively process noisy signals, we introduced various types of noise 
commonly encountered in photoacoustic spectroscopy.

First, thermal noise, modeled as Gaussian white noise, was intro
duced to simulate random fluctuations caused by electronic components 
and other thermal sources within the measurement system. Mathemat
ically, the thermal noise is expressed as: 

Thermal Noise = N
(
0，σ2)

where N
(
0，σ2) denotes a normal distribution with a mean of zero and a 

variance of σ2, set to 0.000003 in this context. We incorporated pink 
noise, also known as 1/f noise, which commonly occurs in low- 
frequency environmental noise scenarios. Its spectral density is 
inversely proportional to frequency, and can be modeled as follows: 

Pink Noise(f) =
1
f
• Random Signal 

To generate the pink noise, a random signal was initially transformed 
into the frequency domain using the Fast Fourier Transform (FFT). The 
spectrum was then modified to achieve a 1/f frequency distribution, and 
the signal was converted back to the time domain using the Inverse Fast 
Fourier Transform (IFFT). Additionally, environmental noise was 
introduced, represented by a low-frequency sinusoidal waveform to 
simulate the background noise typically encountered in experimental 
settings. This noise component can be expressed as: 

Environmental Noise = А • sin(2πft)

where А is the amplitude, set to 0.000003, and f is the frequency, with a 
slight random variation between 0.4 and 0.5 Hz, to mimic real-world 
variability. To simulate fluctuations caused by the laser during the 
photoacoustic measurement process, high-frequency noise was also 
introduced. This noise can be mathematically expressed as: 

Laser Noise = N
(
0，σ2)+А • sin

(
2πfhight

)

Here, N(0，σ2) represents the Gaussian white noise, while fhigh de
notes the high-frequency component, randomly varying between 40 and 
60 Hz.

By superimposing these noise components onto the theoretically 
smooth signals, we created a dataset that closely replicates real experi
mental conditions, as illustrated in Fig. 1. The similarity between the 
noisy simulated signal and the real experimental data, particularly in the 
increased fluctuations, indicates that the synthetic signal with added 
noise can effectively mimic real-world scenarios. This highlights the 
utility of the synthetic dataset for training deep learning models, as it 
exposes them to diverse and realistic noise conditions. Such exposure 
enhances the model’s robustness and effectiveness in denoising tasks, 
particularly for photoacoustic spectroscopy applied to low- 
concentration gas detection.

2.1.2. Normalization
The spectral 2 f data used for training are derived from theoretical 

simulations of specific gases. However, in real measurements, signal 
values for different gases at varying concentrations can span multiple 
orders of magnitude. To ensure the algorithm’s robustness across a wide 
range of gases, it is essential to maintain consistency in the scale of both 
the training data and the denoised outputs. Without proper scaling, the 
model’s performance could be compromised, leading to suboptimal 
results.

To ensure consistency, we applied a normalization process to the 
training data. This process involves subtracting the mean of the signal 
and dividing it by its standard deviation, effectively standardizing the 
data to have a mean of zero and a standard deviation of one. Mathe
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matically this can be expressed as: 

Normalized signal =
signal − μ

σ 

where μ represents the mean of the signal, and σ represents the standard 
deviation. This normalization ensures that the training data are appro
priately scaled, enabling the model to generalize effectively across 
various gas species and concentrations when applied to real-world 
scenarios.

We selected z-score normalization over min-max scaling primarily 
because it preserves the relative morphological features of photo
acoustic signals across varying concentrations. Since gas absorption 
peaks exhibit critical shape characteristics essential for quantitative 
analysis, z-score’s mean-centering and standard-deviation scaling 
maintain these intrinsic patterns without distorting waveform struc
tures—unlike min-max normalization, which forcibly compresses all 
amplitudes into a fixed range (e.g., [0,1]), disproportionately flattening 
low-concentration signals and amplifying noise in near-zero regions. 
Furthermore, z-score’s robustness to outliers (common in experimental 

noise) prevents localized anomalies from skewing the entire dataset’s 
transformation, whereas min-max’s dependence on extreme values 
would catastrophically distort outputs if sporadic high-amplitude arti
facts exist. Crucially, by retaining original data distributions, z-score 
enables consistent feature extraction for gases spanning multiple orders 
of magnitude—ensuring the model generalizes across trace to high 
concentrations without amplitude-induced bias.

2.2. Algorithm architecture

This section describes the architecture of the deep learning model 
developed for denoising photoacoustic spectra. The model combines 1D 
CNNs [36] with Transformer networks [48,49], called CTNN, to effec
tively leverage both local and global information. Local features 
extracted by 1D CNNs directly correspond to the second-derivative 
characteristics of 2 f signals (governed by Voigt profiles). Global de
pendencies captured by Transformers address long-range noise corre
lations inherent in resonant photoacoustic systems. Specifically, 
self-attention mechanisms suppress low-frequency environmental 
noise exhibiting high temporal coherence across wavelength-scanned 2 f 
cycles. This integration optimizes the denoising process while preser
ving critical peak signal features. The input to the model consists of 
simulated signal with 501 data points corrupted by noise, and the output 
is the corresponding smooth, noise-free signal.

The proposed denoising model consists of three main components: an 
encoder, a Transformer encoder layer, and a decoder. The encoder ex
tracts the local features from the input signal, the Transformer captures 
long-range dependencies to retain global context, and the decoder re
constructs the clean signal from the encoded representation.

The encoder consists of a series of 1D convolutional layers that 
progressively extract features from the noisy input signal. Each layer is 
followed by a ReLU [50] activation function, introducing non-linearity 
to enhance the model’s ability to learn complex patterns. As illus
trated in Fig. 2. 1D CNNs are particularly well-suited for processing 
sequential data, such as time-series signals, as they effectively capture 
local dependencies by applying convolutional filters across the 
sequence. These filters identify critical patterns, such as peaks and 
troughs, which are essential for accurately representing the signal 
structure. By stacking multiple convolutional layers, the encoder ex
tracts increasingly abstract features, enabling the model to effectively 
differentiate between noise and the true signal.

After the encoder, the extracted features are fed into a Transformer 
encoder layer, designed to capture global dependencies within the 
sequence. The Transformer layer employs self-attention mechanisms to 
evaluate the relevance of each data point relative to the others. This 
enables the model to preserve critical signal features while effectively 
suppressing noise. The structure of the Transformer encoder is as fol
lows: 

TransformerLayer(dmodel = 256, nhead = 4) × 2 

Originally developed for natural language processing tasks, the 
Transformer architecture has demonstrated exceptional proficiency in 
capturing long-range dependencies within sequential data. At its core, 
the self-attention mechanism enables each element of the input 
sequence to assess the relevance of other elements, allowing the model 
to focus on critical parts of the signal, even those separated by large 
temporal distances. This capability is particularly advantageous in 
signal processing applications, where preserving global context is 
essential for accurate and reliable denoising.

The decoder mirrors the encoders’ structure but employs 1D trans
posed convolutional layers (also known as deconvolution layers) to 
reconstruct the denoised signal from the features extracted by the 
encoder and enhanced by the Transformer. These layers upsample the 
encoded feature map, enhanced by the Transformer, to match the 
original signal’s dimensions, producing a smooth and noise-free output, 
as shown in Fig. 3. The use of transposed convolutional layers enables 

Fig. 1. Comparison of simulated and real acetylene signals: (a) Ideal, noise-free 
simulated signal; (b) Simulated signal with added noise components, including 
environmental, laser source, and thermal noise; and (c) Experimentally 
measured acetylene signal at a concentration of 100 ppb.
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precise restoration of the input’s spatial resolution, preserving the 
essential characteristics of the original signal. This architecture is 
particularly well-suited for denoising photoacoustic signals with com
plex noise profiles, as it effectively retains both local signal details and 
global dependencies, crucial for accurate reconstructing the 501-point 
signal shown in Fig. 1.

By combining the strengths of 1D CNNs for local feature extraction 
and Transformers for capturing global context, the model efficiently 
analyzes fine-grained and broad patterns within the noisy input. This 
synergy ensures that critical peak information is preserved while 
extraneous noise is effectively canceled, resulting in a robust and highly 
accurate denoising process.

2.3. Implementation detail

The CTNN was implemented using the Pytorch deep learning 
framework. The model employs a modular architecture, as outlined in 
Table 1. The encoder, composed of a series of 1D convolutional layers, 
progressively captures local dependencies and extracts increasingly 
abstract features from the noisy input signal. These features are further 
refined by a Transformer encoder, which utilizes four Transformer 
layers with self-attention mechanisms to preserve global context and 
suppress noise effectively. The decoder uses transposed convolutional 

Fig. 2. Structure of the proposed denoising model, consisting of multiple 1D convolutional layers followed by a transformer module. The model processes 128 input 
signals, extracting local features through convolution, while the Transformer module captures the global context for enhanced signal representation.

Fig. 3. The second stage of the proposed denoising model, illustrating the transposed convolutional layers responsible for signal reconstruction. Following feature 
extraction by the Transformer module, these layers upsample the encoded feature map to match the original signal’s dimensions.

Table 1 
Detailed information of the CTNN.

Encoder Transformer Decoder

Conv1d(1 → 16, 
kernel_size=3, 
stride=1, padding=1)

TransformerLayer 
(d_model=256, 
n_head=4)× 2

ConvTranspose1d(256→256, 
kernel_size=3, stride=1, 
padding=1)

Conv1d(16 → 32, 
kernel_size=5, 
stride=1, padding=2)

ConvTranspose1d(256→128, 
kernel_size=3, stride=1, 
padding=1)

Conv1d(32 → 64, 
kernel_size=7, 
stride=1, padding=3)

ConvTranspose1d(128→64, 
kernel_size=5, stride=1, 
padding=2)

Conv1d(64 → 64, 
kernel_size=7, 
stride=1, padding=3)

ConvTranspose1d(64→64, 
kernel_size=7, stride=1, 
padding=3)

Conv1d(64 → 128, 
kernel_size=5, 
stride=1, padding=2)

ConvTranspose1d(64→32, 
kernel_size=7, stride=1, 
padding=3)

Conv1d(128 → 256, 
kernel_size=3, 
stride=1, padding=1)

ConvTranspose1d(32→16, 
kernel_size=5, stride=1, 
padding=2)

Conv1d(256 → 256, 
kernel_size=3, 
stride=1, padding=1)

ConvTranspose1d(16→1, 
kernel_size=3, stride=1, 
padding=1)
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layers to reconstruct the denoised signal, restoring the original di
mensions while retaining critical spatial and spectral characteristics.

During the training process, the model was trained using the Adam 
optimizer with a learning rate of 0.0001, a batch size of 128, and over 50 
epochs. The training and testing are conducted on an NVIDIA T4 GPU.

To improve the fidelity of the denoised model in preserving both the 
peak regions and the global morphology of spectral signals, a custom 
loss function, named Peak MSE With Correlation Loss, was designed. 
This loss function consists of two components: the Peak-Weighted Mean 
Squared Error (Peak-MSE) and the Correlation Loss. The Peak-MSE as
signs higher weights to the peak regions of the target signal, empha
sizing the accuracy of denoising in these critical areas, while calculating 
the mean squared error for all data points. Correlation Loss ensures the 
preservation of the overall trend and global structure of the signal by 
maximizing the correlation between the model’s output and the target 
signal. The total loss function balances these two components through 
the following equation: 

Ltotal = LPeak− MSE + λ • LCorrelation 

Here, λ is the weight of the correlation loss, ensuring both local and 
global fidelity in the denoised output.

3. Experimental setup

The experimental setup can be divided into three main sections: the 
laser control circuit, the gas dilution system and the photoacoustic cell, 
as illustrated in Fig. 4.

Using the HITRAN database, a strong absorption peak for acetylene 
was identified at a wavelength of 6530.39 cm− 1. The distributed feed
back (DFB) laser employed for the experiment was precisely tuned to 
this wavelength. Optimal performance was achieved at a temperature of 
27.1 ◦C and a current of 310 mA, yielding a laser power output of 
46.3 mW. The experimental platform and gas line were then assembled 
as illustrated in Fig. 4.

Mixtures of 10 ppm acetylene in pure nitrogen and high-purity ni
trogen were fed to the gas mixer to generate samples with varying 
acetylene concentrations. Acetylene concentrations ranging from 100 
ppb to 2 ppm in nitrogen were produced. The obtained gas mixture was 
directed through a needle valve into the sealed differential resonant 
photoacoustic cell, the core element of the gas sensing system. After 
passing through the photoacoustic cell, the gas was subsequently evac
uated via a second needle valve connected to a vacuum pump. The flow 
rate and pressure within the gas line were regulated by a flow meter and 

a pressure controller, ensuring stable conditions throughout the 
experiment.

A low-noise differential resonance photoacoustic cell, shown in 
Fig. 5, was utilized to enhance detection sensitivity and suppress 
external noise [6,15]. The cell features two parallel resonators, each 
90 mm in length and 8 mm in inner diameter, designed with fully 
symmetrical geometry to reduce noise from gas flow, window absorp
tion, and electromagnetic interference. Buffer volumes and λ/4 filters 
further mitigate external acoustic noise. Two microphones with iden
tical frequency sensitivity (-32 dB) were centrally placed in each reso
nator, enabling differential amplification to enhance the photoacoustic 
signal while canceling coherent noise.

The resonant frequency of the differential photoacoustic resonator 
resulted to be 1766 Hz. When the laser was switched on, a sine wave 
from a function generator was applied at half the resonant frequency, i. 
e., 883 Hz. A triangular wave was used to scan the laser wavelength 
across the selected absorption feature, fully encompass one complete 
cycle of the 2 f signal. This continuous scanning process allowed real- 
time observation of the 2 f signal on a computer via LabVIEW, inter
faced with a lock-in amplifier. The corresponding 2 f signals for the gas 
sample with different acetylene concentrations were then recorded and 
analyzed.

Fig. 4. Schematic diagram of the experimental setup for acetylene gas detection using differential photoacoustic spectroscopy.

Fig. 5. The structure of low-noise differential resonant photoacoustic cell.
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4. Results and denoising analysis

In order to verify the cross-gas applicability of the algorithm used in 
this article, the simulated absorption line 2 f signal of CH4 was specif
ically used as the training data, while the real test and evaluation data 
used the 2 f signal of C2H2 collected in the laboratory. Therefore, the 
subsequent result analysis proves the performance of the algorithm by 
comparing its performance on training data and real data, which can 
demonstrate the robustness of the denoising effect on absorption line 
changes.

The model training and testing process begins by taking the absolute 
value of the signals, as the actual measured 2 f signals are positive, 
whereas the simulated signals, include two small negative lobes. This 
preprocessing step ensures consistency between the simulated data and 
real measurements.

Following this adjustment, the output dataset for the model was 
generated by adding random noise to the smooth, simulated signals. To 
account for the significant role of data scaling in effective denoising, 
normalization was applied to the dataset to enhance the model’s 
robustness. The model was trained using a processed dataset, achieving 
an SNR enhancement of nearly two orders of magnitude on test data 
with initially low SNR. The denoising performance on a representative 
dataset is illustrated in Fig. 6, demonstrating the model’s effectiveness in 
noise reduction. A comparison between the original noisy signal, the 
clean signal, and the denoised output highlights the model’s ability to 
reduce noise while preserving essential signal characteristics.

The application of the previously trained model was extended to real 
experimental data. Following promising results on the simulated data
set, the trained CTNN model was applied to 2 f signals obtained from 
acetylene gas mixtures measurements. The model was tested on acety
lene signals with concentrations ranging from 100 ppb and 2 ppm, and 

the denoising results are presented in Fig. 7. The trained model exhibited 
strong performance, effectively reducing noise while preserving the 
essential features of the acetylene signals across this concentration 
range.

A detailed analysis of the denoising performance using various 
methods is presented. For each concentration level, approximately five 
2 f signals were recorded. For the 100 ppb measurements, both raw and 
denoised signals were isolated and displayed, as shown in Fig. 8. To 
further evaluate the improvement, composite signals were generated by 
averaging each data point across the five signals, highlighting the sig
nificant enhancement in SNR achieved through denoising.

Given the relatively low amplitude of the 100 ppb signals, which 
complicates accurate SNR calculation, the 500 ppb signals were used for 
this analysis. The denoising results are shown in Fig. 9. The original 
signals exhibited an SNR of ~ 29, corresponding to a detection limit of 
~17 ppb. After denoising, the SNR increased dramatically to ~2044, 
with a corresponding detection limit of 245 ppt. We use the method of 
dividing the gas concentration by the system signal-to-noise ratio to 
calculate the detection limit. This represents a 70-fold enhancement in 
both SNR and detection limit, underscoring the effectiveness of the 
denoising process.

For actual trace gas sensing, calculation speed is a very important 
parameter. The algorithm proposed in this paper has been tested and can 
perform denoising within 2 s, which basically meets the requirements of 

Fig. 6. (a) Comparison between noisy signals (blue) and denoised signals (red). 
(b) Comparison between the original smooth signal (blue) and the denoised 
output (red), demonstrating the model’s ability to recover key features.

Fig. 7. Denoising results for acetylene 2 f signals at various concentrations 
using the trained CTNN model.(a) Acetylene concentration of 100 ppb. Each 
plot includes four signals: the original measured signal, the normalized signal, 
the denoised normalized signal, and the final denoised signal after inverse 
normalization.(b) The red line represents the signal before and after denoising 
of acetylene gas with a concentration of 500ppb. The blue line represents the 
signal before and after denoising of acetylene gas with a concentration 
of 1 ppm.
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real-time detection in the field of gas detection.
The denoising results for signals ranging from 100 to 1000 ppb are 

presented in Fig. 10, with R-squared values calculated to evaluate the 
effectiveness of the CTNN model. The R-squared value increased from 
99.0 % to 99.3 %, indicating an improvement in linearity allowing more 
accurate gas concentration measurements, particularly in challenging 
environments.

5. Conclusion

This study presents the development of a deep learning model that 
integrates 1D CNN and Transformers to effectively denoise photo
acoustic spectral signals. Systematic analysis of both simulated and 
experimental data confirmed the model’s ability to significantly reduce 
noise while preserving essential signal features. By incorporating 
various noise types during training to mimic real-world conditions, the 
model achieved substantial improvements in SNR.

When applied to actual acetylene gas measurements in the concen
tration range of 100 ppb to 2 ppm, the model demonstrated excellent at 

low concentrations, enhancing SNR and improving detection sensitivity. 
For 500 ppb signals, the denoising process achieved a remarkable 70- 
fold increase in SNR, underscoring its practical potential. An improve
ment in R² values denotes an enhancement also in linearity of the sig
nals, contributing to more accurate concentration measurements. 
Overall, this deep learning model represents a significant advancement 
in the denoising of photoacoustic spectroscopy signals, offering a reli
able and effective tool for future spectral analysis in challenging 
environments.
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