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A B S T R A C T

Low-cost sensors networks hold the promise of dense spatial mapping over wide areas, through a combination of 
its price point and transportability, with a fine spatial reconstruction of the pollutants. Their reliability and the 
limited performance, particularly at finer temporal resolutions, represents the other side of coin. These short
comings in dynamic environments pose serious challenges for their use in exposure studies and mobile appli
cations. A recommendation for careful calibration, strategic experimental design, and an emphasis on high 
temporal resolution use cases are essential for guiding future technological development without losing key 
features, such as portability and compactness. In this work, we used a Quartz-Enhanced Photoacoustic Spec
troscopy (QEPAS)-based sensor for sequentially measuring carbon monoxide (CO), nitrous oxide (N2O), and 
water vapor emissions near vehicle exhaust pipes. With detection limits of 150 ppb for N2O and 91 ppb for CO, 
this sensor allows for precise emission measurements. Moreover, the 300 ms temporal resolution enables real- 
time tracking of emission variations with a detailed temporal analysis. Field tests at the University of Bari 
Campus parking area confirmed the sensor capability to capture CO concentration fluctuations from both idling 
and moving vehicles.

1. Introduction

Vehicle exhaust emissions are widely recognized as a significant 
source of air pollution, particularly in urban and industrial areas [1,2]. 
Vehicle emissions consist of various gases released into the atmosphere 
because of fuel combustion in engines. These gases include carbon di
oxide (CO2), a major contributor to global warming, carbon monoxide 
(CO), which is toxic to humans and a greenhouse gases precursor, ni
trogen oxides (NOx), which contribute to smog and acid rain, and hy
drocarbons (HC), which can lead to ground-level ozone formation. 
Additionally, particulate matter (PM) from diesel engines poses serious 
health risks [3]. Among these pollutants, nitrous oxide (N2O) is one of 
the least emitted gases, with concentration less than 10 % above its 
natural abundance (~0.3 ppm), yet it has a global warming potential 
approximately 300 times higher than CO2 [4,5]. Vehicles emission 
standards have been established to control pollutants in many countries, 
and in Europe these regulations are defined by the Euro emission stan
dards, which classify vehicles based on their emission levels. Introduced 

in 1992 with Euro 1, these standards have progressively become stricter, 
with the latest being Euro 6 for passenger cars and Euro 7 set to take 
effect in the coming years [6,7]. Compliance with these standards is 
essential for manufacturers to market vehicles in regulated regions. 
Additionally, to improve the efficacy of measurement, the latest Euro
pean emission regulations have implemented the Real Driving Emissions 
(RDE) test, which measures vehicle emissions under real-world driving 
conditions using Portable Emission Measurement Systems (PEMSs) 
[8–11]. Unlike traditional laboratory tests, these measurements are 
performed with vehicles driven on public roads across a diverse range of 
conditions, ca0pturing real-time primary emissions of CO, NOx, PM, and 
fine dust. The emissions measured during real-world driving are referred 
to as actual emissions. The most advanced and reliable PEMS currently 
utilize optical gas analysis methods, including non-dispersive infrared 
detection (NDIR) and chemiluminescence detection (CLD) [12,13]. 
Despite the response rapidity, these methods suffer low sensitivity. 
Moreover, the 1-minute temporal resolution of the employed equipment 
did not allow for accurately capturing variations in NOx and CO 
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concentrations released in the air. Recently, Horiba introduced a PEMS 
based on Tunable Diode Absorption Spectroscopy (TDAS) with a Her
riott multipass cell, enhanced by a modulation approach to improve 
sensitivity, for sequential N2O and NH3 detection [14,15]. However, the 
primary limitation lies in the large volume of the Herriott multipass cell. 
Despite claims of real-time monitoring, the time required to fill the cell, 
combined with gas exchange delays, prevents a truly dynamic, temporal, 
analysis of emissions. Moreover, the detection limits reported as the 3σ- 
value of the noise level (0.2 ppm for N2O and 0.15 ppm for NH3) are well 
above the natural abundance of both gas species. Despite the advance
ments in technology, detecting transient emissions remains essential for 
gaining a deeper understanding of engine behavior, fuel combustion 
cycles, and the impact of external factors. A faster acquisition rate would 
enable the capture of short-lived emission peaks that would otherwise 
go undetected with lower-frequency sampling. In urban environments, 
vehicle emissions can momentarily surge during acceleration, idling, or 
gear shifts. Therefore, a new approach is required that combines high- 
temporal resolution measurements with high sensitivity and a minimal 
sampling volume. This combination could provide a powerful and novel 
tool for real-time air quality monitoring in urban and industrial areas, 
enabling the study of plume diffusion and its persistence in atmosphere, 
tracking the spatial and temporal evolution of gas concentrations 
beyond natural levels, detecting acute pollution events such as traffic 
surges, and facilitating correlation studies between emissions and 
vehicle engine activity.

While QEPAS has been extensively investigated for trace-gas detec
tion, its implementation for monitoring transient vehicle exhaust emis
sions in open-air environments has not been previously demonstrated. 
Our study utilizes a quartz-enhanced photoacoustic spectroscopy 
(QEPAS) sensing system [16–22] as an alternative to conventional 
PEMSs to monitor air quality by sequentially detecting carbon monox
ide, nitrous oxide, and water vapor near vehicle exhaust pipes. The 
QEPAS system encompasses a Quantum Cascade Laser (QCL) emitting at 
4.6 μm as light source and an Acoustic Detection Module (ADM), 
housing a spectrophone composed of a quartz tuning fork (QTF) and a 
pair of millimeter-sized resonator tubes to probe the photoacoustic ef
fect within the ADM [23]. With an ADM having an internal net volume 
of less than 10 cm3 and a total gas line length of ~ 1 m with 6 mm 
diameter tubing, the system ensures low volumes and rapid gas ex
change times, enabling real-time tracking of multiple gas species, 
switching among them. The QEPAS system was initially used to monitor 
indoor concentrations of the three gas species over three days before 

shifting focus to outdoor CO and N2O emissions from cars. For this 
purpose, the system was mounted in an open parking area at the Uni
versity of Bari Campus, where it tracked CO and N2O diffusion in the 
atmosphere. Emissions were monitored by idling vehicles parked 20 cm 
far from the sensor station, as well as from moving cars passing nearby 
the QEPAS system. This approach distinguishes itself from conventional 
PEMS systems, which generally lack the temporal resolution or porta
bility needed for such dynamic monitoring.

2. Material and methods

2.1. Quartz-enhanced photoacoustic spectroscopy sensor

The schematic of the QEPAS sensor system is shown in Fig. 1.
The light source was an AdTech QCL with a central emission wave

length of 4.61 μm. The QCL temperature was controlled and its driving 
current was supplied using a Thorlabs ITC4002QCL Combined Current 
Driver and Thermoelectric Cooler (TEC). The laser light was focused by 
means of a 75 mm focusing lens (L) and then spatially filtered by using a 
pinhole (P) before entering the ADM. The ADM was designed as a small, 
compact gas cell that houses a QEPAS spectrophone, with two windows 
for laser light entry and exit, and an inlet/outlet for gas flow. The gas 
detection principle is based on photoacoustic effect, consisting in 
detection of sound waves generated by non-radiative energy relaxation 
of optically excited molecules, caused by the absorption of infrared 
modulated light resonant with a selected optical transition. In QEPAS, 
the sensing element is a spectrophone, consisting of a QTF and a pair of 
resonator tubes positioned on either side of the QTF [24–27]. This 
arrangement allows the laser beam to pass through the tubes and be 
focused between the prongs of the QTF. Hence, due to photoacoustic 
effect, acoustic waves are generated between the QTF prongs. The 
acoustic waves deflect the two prongs in opposite directions, exciting the 
antisymmetric flexural vibration mode if the acoustic frequency matches 
the QTF resonance mode frequency or one of its subharmonics [28,29]. 
The strain field induced on the QTF prongs generates a polarization field 
due to the piezoelectric properties of quartz. The generated quadrupole 
charge distribution is efficiently collected by a proper design of the 
electrode layout, thus producing a detectable electrical signal. Instead, 
any acoustic source located outside the area between the prongs will 
excite symmetric modes that, due to the electrode layout, are not 
piezoelectrically active, thereby ensuring immunity to environmental 
noise [16]. Moreover, at atmospheric pressure, the full width al half 

Fig. 1. Sketch of the employed experimental setup: QTF (quartz tuning fork), MR (micro-resonators tubes), ADM (acoustic detection module), QCL (quantum cascade 
laser), P (pinhole), L (lens).
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maximum (FWHM) of the QTF resonance curve of the fundamental 
antisymmetric flexural mode is generally lower than 1 Hz [30]. This 
narrow bandwidth ensures highly efficient frequency selectivity, further 
reducing the impact of ambient noise on the QEPAS signal, making it 
ideal for environmental applications. A power meter (PM) was posi
tioned behind the ADM for precise alignment. Additionally, the power 
meter continuously monitored laser power during both indoor and 
outdoor measurements at 1 Hz sampling rate, eventually enabling 
compensation for signal drift induced by power variations.

The QEPAS sensor system was operated in wavelength modulation 
and second harmonic detection [16]. A triangular ramp and a sinusoidal 
dither were applied to the laser source to finely tune the laser emission 
wavelength and modulate the laser light at the half of the QTF funda
mental resonance mode f0/2, respectively. The QTF piezoelectric cur
rent was converted into an electrical signal by a transimpedance 
amplifier (not shown in Fig. 1) and the f0-component was extracted by a 
5 MHz Zurich lock-in amplifier at an acquisition time of 300 ms.

The gas handling system includes an MCQ Instrument Gas Blender 
(GB-100) to manage flow rates and produce desired gas mixtures for 
both laboratory calibration or air sampling during outdoor measure
ments. For outdoor sampling operations, the inlet of the sensor system 
was equipped with a EU5 filter (compliant with the EN 779 standard) to 
prevent contamination of the ADM by dust and heavy pollutants. This 
filter provides high filtration efficiency (>99 %) for particles with a 
diameter greater than 1 µm. A laboratory test was conducted to confirm 
that the filter does not affect the composition of CO, N2O, and water 
vapor in the sampled air (see Supplementary file). An ALICAT pressure 
controller/flow meter coupled with a pump allowed fixing the gas 
pressure and monitoring the flow rate inside the gas line. All measure
ments were conducted at fixed conditions of 300 Torr pressure and 50 
sccm flow rate. The operating pressure value was chosen as the one that 
maximizes the QEPAS signal, resulting from the balance between the 
increase in molecular absorption and the decrease in QTF quality factor 
with varying pressure. Additionally, a hygrometer continuously moni
tored ambient relative humidity and temperature at 1-minute sampling 
rate, with these values subsequently converted into absolute humidity.

2.2. Laboratory calibration of the sensor system

As a first step, reference spectral scans were acquired with the QEPAS 
sensor system by directly sampling laboratory air through the gas 
mixer’s input channel. The AdTech QCL operated at 15 ◦C, with a 
triangular ramp sweeping the QCL current from 238 mA to 308 mA at, 
resulting in a wavenumber range from 2188.7 to 2190.6 cm–1, at a 
repetition rate of 5 mHz. The chosen spectral region allowed for the 
simultaneous detection of CO and N2O absorption features, as well as 
water vapor, while the optical power varies between 23 mW and 43 mW 
during each scan. Fig. 2a presents a comparison between spectral scans 
of laboratory air (red line) and pure nitrogen (black line). These 
experimental results were compared to HITRAN simulation of absorp
tion cross-section for an air sample at 300 Torr (1.19 % H2O, 310 ppb 
N2O, 150 ppb CO, and 77.87 % N2 as rest) in Fig. 2b [31]. Fig. 2c reports 
the stick spectrum for each molecular species (N2O, CO, and H2O) in 
term of linestrength of each absorption line weighted by the analyte 
concentration. This provides a one-to-one association between the ab
sorption features in Fig. 2b and the corresponding molecular species.

Within the selected spectral range, two N2O absorption peaks were 
identified at 2189.27 cm–1 and 2190.34 cm–1, with linestrengths of 7.67 
× 10–26 and 8.64 × 10–26 cm/molecule, respectively. The other N2O 
weak absorption features are expected to generate signals below the 
sensitivity of the QEPAS sensor. The absorption feature observed at 
2190.02 cm–1 is attributed to a CO absorption line characterized by a 
linestrength of 4.31 × 10–26 cm/molecule, whereas the peak at 2189.43 
cm–1 is associated to water vapor.

The sensor was then calibrated for N2O and CO detection using two 
certified gas cylinders, one containing 10 ppm of N2O and the other 8 
ppm of CO, both in a nitrogen (N2) matrix. By diluting them with a pure 
N2 cylinder, analyte concentrations were varied in the range 2–10 ppm 
and 1–8 ppm for N2O and CO, respectively. Sensor calibration was 
carried out through scanning the QCL current in the whole spectral 
range of Fig. 2a. The two N2O absorption features located at 2189.27 
cm–1 (P1) and 2190.34 cm–1 (P2) were efficiently reconstructed. The 
peak values were plotted as a function of the N2O concentration in 
Fig. 3a.

It is worth noting that the difference in amplitude between the P1 
and P2 signals can be attributed to the dependence of the QEPAS signal S 

Fig. 2. (a) Spectral scans of laboratory air (red line) and pure nitrogen (black line). (b) HITRAN simulations of absorption cross-sections for an air sample at 300 Torr 
(1.19 % H2O, 310 ppb N2O, 150 ppb CO, and 77.87 % N2). (c) Linestrength stick spectrum for each molecular species (N2O, CO, and H2O).
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on the laser power, following the relation S ∝ PαQ, where Q is the QTF 
quality factor, α the absorption coefficient, and P the laser power. As 
shown in Fig. 2a, moving toward lower wavenumbers corresponds to 
higher laser currents and, consequently, higher laser powers. Thus, the 
P1 peak is measured at a higher optical power than P2, leading to a 
larger QEPAS signal amplitude, despite its lower linestrength.

The best linear fit of the dataset provides the sensitivity of the QEPAS 
sensor system for N2O detection, resulting mP1

N2O = 1.33 mV/ppm and 
mP2

N2O = 0.85 mV/ppm for P1 and P2, respectively. For both indoor and 
outdoor measurements, the N2O concentration was determined by 
analyzing P2, as it provides the highest sensitivity.

The same procedure was applied during the calibration process for 
CO detection, where its peak values of the absorption feature at 2190.02 
cm–1 (Fig. 2b) were analyzed as a function of CO concentration (Fig. 3b), 
yielding a sensitivity of mCO = 2.18 mV/ppm. The three calibration 
curves report a negligible offset, meaning that the MDLs are not influ
enced by residual optical noise but are instead determined solely by the 
intrinsic thermal noise of the QTF.

The minimum detection limits (MDLs) were determined as the lowest 
analyte concentrations that produce a signal-to-noise ratio of 1. With a 
measured noise level of 0.2 mV (corresponding to the 1σ standard de
viation of the QEPAS signal distribution in the absence of analytes in the 
ADM), the MDLs were calculated to be 150 ppb for N2O and 91 ppb for 
CO.

2.3. Validation of the sensor platform

Validating sensors for environmental monitoring is essential to 
ensure their accuracy and reliability over time. Environmental condi
tions and contamination can impact sensor performance, leading to drift 
or altered responses that compromise measurement quality. For 
instance, gas sensors used in air quality monitoring can experience 
baseline shifts or changes in sensitivity, which may affect the detection 
of target gases. Regular calibration and performance checks are there
fore important to maintain sensor accuracy and reliability, ensuring 
consistent, high-quality data for long-term environmental monitoring.

The accuracy of the QEPAS system can be primarily affected by two 
factors: degradation of the resonance properties of the spectrophone and 
changes in the sensitivity values established during the calibration 
process. Consequently, during both indoor and outdoor measurements, 
the acquisition was periodically paused to reconstruct both the spec
trophone’s resonance curve and the N2O absorption features P1 and P2, 
in sequence. The latter was done by switching from air sampling to a gas 
line containing a cylinder of 10 ppm N2O in N2 upstream. As an example, 

the spectrophone resonance curves and the 10 ppm N2O absorption 
features from indoor measurements run performed on January 9th are 
shown in Figs. 4a and 4b, respectively.

The spectrophone resonance curves were reconstructed in the exci
tation frequency range 12456–12465 Hz. A Lorentzian fit was super
imposed on the experimental data to determine the resonance frequency 
(f) and FWHM of the curve, allowing the estimation of quality factor Q as 
f/FWHM. The extracted values are listed in Table 1.

Figs. 4b, P1 peak values were extracted and compared with the 
calibration curve in Fig. 3a. An average N2O concentration of 10.16 ±
0.17 ppm was calculated, which matches the expected value based on 
the gas cylinder concentration.

Both validation procedures confirmed that no recalibration or on- 
line re-adjustment of any working parameters are necessary during a 
full day of measurements, proving the robustness of the sensor system.

3. Results

3.1. Indoor air quality assessment

Fig. 5 presents the sequential detection of N2O, CO, and H2O in 
laboratory air, monitored over three days, specifically on January 9th, 
10th and 13th, 2025. The laboratory volume measures 10 m × 7 m with 
a height of 3 m, and features forced external ventilation on one side, 
with a typical occupancy of two to three people. The data were acquired 
at a sampling rate of one point per minute, corresponding to the time 
required for the sensor system to scan the entire laser current range and 
extract peak values associated with the three gas species. The bottom 
panel also displays the absolute humidity values measured at 1-minute 
sampling rate by an external hygrometer placed close to the sensor 
system.

In the absence of anthropogenic or natural sources of CO and N2O in 
the laboratory, the average values closely match the expected natural 
abundance and remain consistent throughout the three days of mea
surement. The absolute humidity measured by the external hygrometer 
reveals how water vapor levels can vary from day to day, influenced by 
various unpredictable factors. This variation impacts the QEPAS H2O 
signal, which reflects the water vapor in the gas line. Indeed, the sensor 
operates in a flowing regime, utilizing a gas handling system that in
cludes a flow/pressure controller and a pump to draw humidified lab
oratory air into the ADM. As the flow passes through, water vapor can 
adhere to the internal walls just as easily as it can be released, due to the 
well-known adhesion effect of strong polar molecules like water vapor. 
Consequently, the gas mixture entering the ADM, and in turn the QEPAS 
H2O signal, reflects only in part the humidification of sampled air, which 

Fig. 3. QEPAS peak signals as a function of the gas target concentration for N2O P1 (a, green circles), N2O P2 (a, green squares) and CO (b, red circles). The solid lines 
represent the best linear fit.
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is expected to be influenced by external humidity.

3.2. Sequential outdoor detection of N2O, CO, and H2O

The sensor system was installed in the parking area of the Physics 
Department on the University of Bari Campus, strategically positioned 
near the traffic flow and adjacent to a parking spot. Fig. 6 presents a top- 
view of the parking area extracted from Google Maps.

The red dashed parking slot, located 20 cm from the sensor S, is 
designated for idling vehicles to allow continuous monitoring of N2O 
and CO concentrations from vehicle exhaust gases. The arrows indicate 
the direction of vehicle movement: arrows labelled “A” represent the 
path of cars entering the parking area, while arrows labelled “B” in
dicates the path of cars exiting the parking area. Vehicles following the 
“A” flow pass approximately 50 cm away from the sensor at the closest 
position.

Fig. 7a reports the recorded concentrations of N2O and CO on 
January 16th, between 10:40 AM and 03:50 PM along with the QEPAS 
H2O signal and the absolute humidity measured by the hygrometer, with 

the same measurement approach used for the indoor monitoring. Since 
each scan takes 1 minute, the analyte concentrations are recorded at 1- 
minute intervals.

The shaded areas represent data collected when two different idling 
vehicles belonging to the same EURO4b class were parked near the 
sensor, within the red dashed parking slot of Fig. 6. During this period 
(from 11:00 to 11:45 AM), the CO concentration rose to ppm levels, 
compared to its natural abundance of approximately 350 ppb (Fig. 7b). 
Meanwhile, N2O exhibited a slight 100 ppb increase, which is statisti
cally insignificant as the variation falls within 3σ of the 150-ppb mini
mum detection limit, defined as the N2O concentration yielding a signal- 
to-noise ratio (SNR) equal to 1. This outcome was expected, as Euro 4 
and later vehicle classes are not considered relevant sources of N2O, 
whose concentration typically remains close to its atmospheric back
ground abundance. The small fluctuations observed confirm that the 
sensor response is consistent with the expected low emission profile. 
However, including N2O in the detection scheme serves a dual purpose: 
first, it demonstrates the sensor’s ability to sequentially monitor multi
ple gas species (CO, N2O, and H2O) with high sensitivity and rapid 
switching, validating the versatility of the compact QEPAS platform; 
second, it provides a benchmark for future applications where N2O may 
represent a more significant emission component, such as in industrial 
or agricultural contexts in long-term outdoor campaigns.

From 12:00 AM to 03:50 PM, the red dashed parking slot was free 
from vehicles. During this time interval, over thirty vehicles passed 
through the sensor along the path marked by arrows A and B in Fig. 6, 
without causing a significant increase in CO levels. The data points in 
Fig. 7c corresponds to an average CO concentration of 350 ppb, with a 
standard deviation of 68 ppb, reflecting a pattern similar to that 
observed during the three days of indoor monitoring.

3.3. High-resolution CO detection from idling vehicles

To increase the acquisition rate, the laser current was locked on the 
CO peak. With a signal integration time of 0.1 s, the CO concentration 

Fig. 4. (a) Frequency response of the spectrophone (quartz tuning fork coupled with resonator tubes) measured during indoor air quality assessment on January 9 at 
different recording times, during which air monitoring was temporarily interrupted. (b) QEPAS spectra measured immediately after each corresponding frequency 
response acquisition, using a 10 ppm N2O certified gas mixture.

Table 1 
Resonance frequency, FWHM and quality factor values calculated from the 
Lorentzian fit performed on the experimental data shown in Fig. 4 (top panel). 
The quality factor is calculated as the ratio of the resonance frequency to the 
FWHM. Uncertainties in the resonance frequency and FWHM are extracted from 
the Lorentzian fit, while the uncertainty in the quality factor is determined 
through error propagation.

Recording 
time (HH:mm)

9:45 11:30 13:26 16:03

f (Hz) 12461.635 
± 0.002

12461.692 
± 0.002

12461.684 
± 0.002

12461.683 
± 0.002

Δf (Hz) 0.671 ±
0.006

0.676 ±
0.006

0.671 ±
0.006

0.671 ±
0.006

Q 18572 ± 166 18434 ± 164 18572 ± 166 18572 ± 166
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was recorded every 0.3 s. Fig. 8a shows the CO monitoring data for two 
time periods: from 04:00 PM to 04:27 PM and from 04:30 PM to 04:52 
PM on January 16th, with an idling EURO4b vehicle parked in the red- 
dashed parking spot.

The average CO emissions reach the ppm-level, and they display an 

oscillating pattern that is likely linked to the activity of the car’s engine. 
These fluctuations in concentration suggest that the CO levels are closely 
tied to the engine’s operation, with emissions increasing and decreasing 
in response to changes in engine load or speed. When the car is turned 
off, the CO concentration returns to its baseline level within 21 and 43 s 
during the two time periods, respectively, as shown in Figs. 8b and 8c. 
While the engine is running, an average CO concentration of 4.1 and 3.3 
ppm is released into the atmosphere at 20 cm from the exhaust pipe of 
the vehicle.

3.4. Analysis of CO emissions from moving traffic

On January 17th, the sensor system was utilized in this configura
tion, for rapid, real-time CO detection tracking emissions from passing 
cars. Fig. 9 presents the CO concentration throughout the day at selected 
time intervals.

A video footage with a webcam enabled the synchronization of car 
passages with the timeline of Fig. 9 (Supplementary file). The green lines 
indicate the moments when a car enters the parking area, following the 
A arrows path in Fig. 6, while the blue lines mark when cars exit, 
following the B arrows path. The semi-transparent area represents the 
time interval during which an idling car remains parked near the sensor 
in the red dashed slot. When a car passes near the sensor, the CO release 
in the air shows a nearly instantaneous spike, followed by a rapid 
decline, as illustrated in the zoomed-in view in the three right panels (b), 
(c) and (d) of Fig. 9. Within less than 40 s, the CO level returns to its 
baseline and this explains why they were not detected when the sensor is 
in scanning mode (Fig. 7a). To measure CO emissions exclusively from 
moving traffic, we analyzed data collected in areas without idling ve
hicles parked near the sensor. The average CO concentration measured 
from 9:20 to 9:40 in the upper panel is 528 ppb. In the central panel the 
mean concentration measured from 12:45 to 13:58 is 460 ppb, while the 
one measured from 15:05 to 15:45 (lower panel) results 430 ppb. These 
measures are consistent with the daily averages (~600 ppb) collected 
the same day by the monitoring stations located in Via Caldarola (~1.6 
km from the parking area) operated by the regional agency ARPA Puglia 

Fig. 5. Sequential detection of N2O, CO, and H2O in laboratory air (January 9, 10, and 13, 2025). The first and second graphs show N2O and CO concentration 
variations over time, respectively, with the average values and 1σ-standard deviation values reported above each dataset. The third graph shows H2O QEPAS signal 
variations over time, with the average values reported above each dataset. The fourth trend displays absolute humidity values recorded by an external hygrometer 
placed close to the QEPAS sensor system.

Fig. 6. Top-view of the parking area of the Physics Department on the Uni
versity of Bari Campus extracted from Google Maps. The blue rectangle denotes 
the sensor location and the red dashed parking slot, located 20 cm from the 
sensor S, is designated for idling vehicles. The arrows (A e B) indicate the di
rection of vehicle movement.
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[32]. Via Caldarola area is characterized by higher volume of traffic 
compared to the university parking area, which accounts for the slightly 
elevated average value measured.

4. Conclusions

In this work, we have demonstrated the application of a QEPAS- 
based sensor to real-time monitoring of transient vehicle exhaust emis
sions in open-air conditions. Unlike previous QEPAS implementations 
mainly targeting stable indoor environments or background monitoring, 
our system achieves sub-second resolution of CO emissions directly from 

idling and moving vehicles, thanks to its compact, low-volume design 
enabling rapid gas exchange. This represents a significant advance 
compared to conventional PEMS, which typically provide ≥ 1-minute 
resolution and are limited in capturing short-lived emission peaks. By 
enabling real-time detection and rapid response, we have demonstrated 
that our technology is fundamental for advancing sensing systems, 
ensuring efficient monitoring and management of atmospheric emis
sions. Critical challenges commonly associated with low-cost sensors 
have been effectively addressed, enhancing sensitivity, selectivity, and 
stability while also minimizing interference from environmental factors 
and sensor drift. While low-cost air sensors offer the advantage of high 

Fig. 7. (a) Sequential N2O, CO, and H2O detection in the parking area on January 16th. From top to bottom: the first and second panels show concentration 
variations of N2O and CO, respectively. The third panel shows QEPAS signal for H2O. The fourth panel displays absolute humidity values over time. The shaded areas 
represent data collected when two different idling vehicles (EURO4b class) were parked near the sensor. (b) Zoomed-in view of CO concentration data from 11:00 AM 
to 11:45 AM, highlighting fluctuations during the idling vehicle events. (c) Zoomed-in view of CO concentration data from 12:00 AM to 03:50 PM.

Fig. 8. (a) CO concentration variations over two-time windows with an idling EURO4b vehicle parked in the red-dashed parking spot shown in Fig. 6. The graph 
reports also the average CO concentrations as solid lines emitted from the exhaust pipe while the engine is running. (b) and (c) show a zoomed-in view of the CO 
concentration starting from the moment the engine was turned off, for each of the two-time windows.
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spatial density due to their affordability, they lack the capability to 
reconstruct temporal emission profiles accurately. Additionally, the 
delayed nature of validated data limits their potential for immediate 
analysis [33,34]. This presents a significant challenge for emerging 
trends that focus on integrating artificial intelligence (AI) into sensor 
networks for predictive analytics and autonomous decision-making 
[35–37]. Our sensor system achieves real-time monitoring of carbon 
monoxide (CO) emissions with sub-second resolution when the laser 
current is locked on the absorption peak of the target gas. In this 
configuration, the system can reconstruct the temporal dynamics of CO 
dispersion, as shown in Fig. 8a. By capturing the variations in CO 
emissions over time, it becomes possible to model how contaminants 
spread through the air, considering factors such as wind patterns, tem
perature fluctuations, and urban topology. Furthermore, our point- 
detection sensing system facilitates the study of the persistence of 
high-concentration gas puffs in the atmosphere. Indeed, Fig.s 8b, 8c and 
9 prove that when the car was turned off or moved away from the sensor 
system, the CO emissions quickly returned to their baseline levels. This 
rapid decline highlights the direct influence of engine operation on CO 
concentration, demonstrating the capability of our system in detecting 
transient pollution events. This information is particularly valuable for 
algorithms designed for environmental monitoring and predictive 
modeling. AI-based models, such as machine learning and deep learning 
approaches, rely on high-resolution temporal data to improve their ac
curacy in forecasting pollution levels and identifying emission sources as 
well as to refine dispersion models, reducing uncertainties and 
improving decision-making processes [38,39]. By continuously learning 
from new data, these systems can adapt to changing environmental 
conditions.

Ultimately, our sensor system can be a powerful tool for rapidly 
verifying compliance with on-road emission standards. Its real-time 
detection capability allows for quick and efficient emission checks 
directly in real-world driving conditions, without the need for 

laboratory testing. Fig. 9a shows that when an idling Euro 6d vehicle is 
parked near the sensor system, no CO emissions are detected. This result 
aligns with expectations, as Euro 6d engines are designed for highly 
efficient combustion, precise air–fuel mixture control, and effective 
catalytic conversion, ensuring that any residual CO is fully oxidized into 
CO2.

By providing immediate and accurate measurements, our sensor 
system can be deployed for roadside emission monitoring, enabling 
authorities and researchers to assess vehicle compliance in real traffic 
scenarios. This approach is particularly valuable for identifying high- 
emitting vehicles, validating regulatory standards, and supporting the 
development of smarter emission control strategies. Thanks to the 
intrinsic modularity of QEPAS, the system can be straightforwardly 
extended beyond CO and N2O detection. Since the detection principle is 
wavelength-independent and does not require optical detectors, adapt
ing the platform to other target species, such as NOx and NH3, only re
quires replacing the laser source while keeping the same sensor 
architecture. This flexibility has already been demonstrated in [40], 
where a single QEPAS configuration was employed to detect multiple 
pollutants by laser source switching. Moreover, the QEPAS sensor can be 
integrated with low-cost sensors for the simultaneous quantification of 
particulate matter (PM) [41]. Such a roadmap ensures the scalability of 
our platform to meet the upcoming Euro 7/RDE requirements while 
maintaining compactness, robustness, and cost-effectiveness.
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