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Abstract: We report on a broadband gas sensor based on direct absorption spectroscopy in the
mid-infrared range for the simultaneous detection of methane, ethane, and propane in natural
gas-like mixtures. The system employs a broadband supercontinuum light source, coupled with an
absorption cell and an optical spectrum analyzer with a resolution of 0.5 cm™!. This configuration
enables reconstruction of the full absorption bands of the target alkanes, which exhibit significant
spectral overlap in the 2.8-3.2 um spectral region. A comparative study between multiple linear
regression (MLR) and partial least-squares regression (PLSR) was conducted to determine the
concentration of each individual component. The results highlight the superior performance
of PLSR in the presence of unbalanced concentration ratios (1:10) among the three alkanes,
achieving mean prediction accuracy of 98%, 93% and 94% for methane, ethane, and propane,
respectively.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Natural gas (NG) is a crucial energy resource composed primarily of light hydrocarbons, with
methane (C1) as the dominant component, followed by ethane (C2) and propane (C3), and varying
amounts of higher alkanes, nitrogen, carbon dioxide, and other trace gases [1]. The relative
concentrations of these hydrocarbon species provide valuable insights into the NG characteristics,
such as wetness and density, as well as for fluid classification and fingerprinting [2,3]. Once NG
is refined for commercial use, its composition is continuously monitored to determine its calorific
value, which reflects its combustibility and, consequently, its quality [4]. Gas chromatography
(GC) represents nowadays the standard technique for assessing NG composition, recognized
by regulatory agencies as the reference method. In combination with thermal conductivity and
flame-ionization detectors, GC enables precise measurements of NG component concentrations
by calibrating the system with certified reference standards [5—7]. However, due to the complex
nature of NG, GC methods often require the use of several detectors, multiple columns, and
backflushing techniques to ensure accurate detection of all the individual components found
in NG [8]. Moreover, this approach is often limited by its bulky instrumentation, operational
complexity, and response time, not suitable for on field or real-time monitoring scenarios.

In recent years, optical methods have gained prominence in the field of complex gas samples
analysis due to their potential for fast, non-invasive, and highly sensitive measurements without
the use of reagents and solvents [9—11]. For these reasons, optical-based approaches have been
recently introduced in the field of NG analysis [12,13]. Among the others, infrared spectroscopy
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stands out as a powerful optical technique for identifying and quantifying molecular species
based on their characteristic vibrational transitions [14]. Mid-infrared (MIR) spectral range is
particularly interesting for NG characterization because of the presence of fundamental C-H
stretching modes within the 3-4 um wavelength range, leading to intense absorption bands for
multiple hydrocarbons [15,16]. The maturity of interband cascade lasers in this spectral region
has enabled various hydrocarbon sensing techniques, such as tunable diode laser absorption
spectroscopy (TDLAS) [17-19], photoacoustic spectroscopy (PAS) [20-22], and cavity-enhanced
detection schemes [23-25]. However, their narrow spectral range requires isolated strong
absorption lines for each species, which becomes challenging in gas mixtures like NG, where
overlapping features and highly unbalanced concentrations can cause minor components to be
masked by dominant ones.

The reconstruction of the full absorption band could help in better discrimination among the
different constituents, even under significant concentration disparities. In this context, broadband
light sources hold significant potential for reconstructing the complete absorption bands of
light hydrocarbons. Near-infrared (NIR) spectrometric methods have already been proposed,
employing for example a cost-effective handheld NIR spectrometer combined with a tungsten
lamp and a flow cell for the quantification of methane, ethane, and propane in natural gas and
biogas [26]. Moving towards the MIR region, recent studies have explored the use of frequency
combs and supercontinuum (SC) sources as a new generation of broadband light sources for
laser absorption spectroscopy [27]. SCs are broadband light sources generated through nonlinear
optical processes in specially engineered fibers, offering continuous spectral coverage over
several microns. In the mid-infrared region, the phenomenon of supercontinuum generation is
typically achieved using fluoride [28] or chalcogenide fibers [29,30], enabling high-resolution
and multi-component spectroscopic analysis. Their broad bandwidth makes them particularly
suitable for analyzing complex gas mixtures with overlapping absorption features. Standard
detection methods involve the use of a Fourier transform spectrometer or a scanning-grating-
based spectrometer [31,32] Although dual-comb spectroscopy offers high spectral resolution and
sensitivity, its instrumental complexity and high cost hinder field deployment. Supercontinuum
sources, on the other hand, provide a simpler and more cost-effective alternative for multi-species
gas detection. One example is a fully integrated and transportable sensor employing a MIR
supercontinuum source spanning the 2—4 wm range. Thanks to its broad spectral coverage, the
system enabled simultaneous detection of multiple VOCs using a grating-based spectrometer
combined with two thermoelectrically cooled HgCdTe photodetectors [33], or with a MIR-to-NIR
upconverter [34].

To benefit from the spectral information provided by the broadband sources, the spectroscopic
measurements are typically coupled with machine learning-based multivariate analysis (MVA)
[35,36]. Among the others, partial least squares regression (PLSR) represents a solid and
reliable MVA approach for spectroscopic analysis, being based on the correlation removal and
dimensionality reduction by evaluating the so-called “latent variables” underlying the collected
data [37-39]. For these reasons, this MVA approach has been employed in several applications
aiming to deconvolve the spectral contribution of overlapping absorption peaks [18—42].

In this work, a broadband mid-infrared supercontinuum source was employed to accurately
resolve overlapping spectral features through direct absorption spectroscopy. Gas samples were
passed through an absorption cell, and the spectral components of the transmitted light were
analyzed using an optical spectrum analyzer employed as Fourier transform spectrometer. To
mimic natural gas mixtures, laboratory samples were prepared at a 1:10 dilution using certified
concentrations of the three hydrocarbons and a gas blending system, with highly unbalanced
concentration ratios. This approach introduced the challenge of spectral deconvolution, where
the total absorption spectrum must be mathematically separated into individual components
spectra. This required multivariate calibration techniques relying on well-characterized set of
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calibration samples with known compositions, which are used to build predictive models for
individual component quantification.

2. Experimental setup

A schematic of the experimental setup is shown in Fig. 1.
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Fig. 1. Schematic of the employed experimental setup. Blue solid lines represent gas line
connections, red solid line represents the optical beam, and grey dashed line represents
USB connection. OSA, Optical Spectrum Analyzer; PACU2, pure air circulator unit; SC,
supercontinuum source.

A broadband supercontinuum (SC) source (Thorlabs SC4500) was used as light source,
providing a spectral emission covering the 1.3—4.5 um range [43]. To ensure long-term stability
and prevent degradation of the internal components, the SC source was connected to a pure
air circulator unit (Thorlabs, PACU2), which continuously supplies dry air into the SC source.
Two plane mirrors, M1 and M2 in Fig. 1, were used to direct the collimated output beam
through a gas absorption cell with an optical path length L = 11.6 cm, equipped with two CaF,
windows. The light transmitted through the cell was collected and analyzed by an optical
spectrum analyzer (Thorlabs OSA207C), connected to a personal computer for data acquisition.
The spectral resolution of the employed spectrometer, defined according to the Rayleigh criterion,
was 0.5cm™!. This spectral resolution was selected to guarantee a high signal-to-noise ratio
within the broadband spectral region targeted for the analysis. The OSA207C was operated with
an averaging factor of 10 to improve the signal-to-noise ratio, and a Hann apodization function
was applied to improve baseline stability. Considering the averaging operations, each sample was
characterized by an acquisition time of 30 s to collect the spectrum. Background measurements
were collected prior to each acquisition.

The gas line system consists of a gas blender (MCQ Instruments, GB100 Plus), a pressure
controller (ALICAT scientific MCS3) and a vacuum pump. Three gas cylinders with certified
concentration, 10% C1 in Nj, 1% C2 in N, and 1% C3 in N», respectively, were used for
the generation of different gas mixtures. The gas cylinders were provided with a 30 expanded
uncertainty of 4% of the nominal concentration. Each gas cylinder was individually connected
to the gas blender inlet, together with a pure nitrogen cylinder used for dilutions. In this way,
different gas mixtures were dynamically prepared and introduced into the gas cell at a constant
total flow rate of 100 sccm, at pressure value of 750 Torr. The pressure inside the cell was
regulated using the pressure controller positioned downstream of the gas cell. Before each
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measurement, the gas cell was evacuated using the vacuum pump to eliminate any residual
gases, and background spectra were acquired. Spectroscopic measurements were performed by
recording the transmitted light spectrum using the OSA.

3. Calibration procedure

Although the SC source spans a broad spectral range, the regions of interest for this study were
determined by properly selecting the ranges where the highest and more relevant absorption
bands of C1, C2 and C3 occur, i.e., in the spectral region around 3.3 pm [16]. For each analyte,
the optimal spectral range was tailored to extract the maximum information, thus avoiding
flat, near-zero absorbance regions. The absorbance spectra shown hereafter were calculated
comparing the transmitted light spectrum measured by the optical spectrum analyzer with and
without the target gas, I; and Iy, respectively, according to the Lambert-Beer law equation:

L) = Ip(\) - o)L _ oL - oA n

where @;(1) is the absorption coefficient of the i-th analyte at wavelength A, L is the optical
pathlength, and A;(2) is the related absorbance.

Calibration measurements for the three analytes were performed individually by generating
diluted gas mixtures. The cylinders with certified concentration were enabled one at a time
at the gas blender inlet, with pure nitrogen N, used as the dilution gas. For each analyte,
different concentrations were obtained by adjusting the relative flow rates at the gas blender
input while maintaining a constant output flow. The absorbance spectra were retrieved at
different concentrations of the analyte in the mixture, and the area under the relevant absorption
features was calculated. Then, the area under the absorbance curve was computed as the sum of
elementary trapezoids, each having as base the wavenumber step between two adjacent points
and a pair of adjacent absorbance values as heights. The resulting values were plotted as a
function of the corresponding gas concentrations to obtain the calibration curve for the analyte
under investigation. The zero-point value of this dataset was determined based on the absorbance
spectrum obtained when the cell was empty, at a pressure below 20 Torr. The spectrum recorded
under this condition serves as the background, above which any absorption signal can be identified.
In fact, given the large volume of the cell, the most effective method for eliminating all potential
absorbers (including water vapor) is to reduce the pressure to the lowest achievable level. In this
condition, the integrated absorbance area was measured to be 0.004 in arbitrary units (a.u.).

Figure 2(a) reports the absorbance spectrum (in absorbance units, abs. u., to be distinguished
from the a.u. used for area estimation) in the spectral range of 2850 cm™! to 3175 cm™!, measured
when a C1 concentration of 10% in N, was flowing through the gas cell. Figure 2(b) shows the
calibration curve in terms of the integrated absorbance area, with C1 concentrations spanning
from 2% to 10%.

A clear linear trend is observed between the integrated absorbance area and the C1 concentration,
indicating that the Beer-Lambert law (Eq. (1)) governing optical absorption in the gas cell can
be linearized under conditions of weak absorption when considering the whole absorption
spectrum. A linear fit imposed to the experimental dataset yields a slope of 4.391 a.u./%, which
corresponds to the sensitivity of the sensor system in detecting C1. The error bars on the data
points were calculated as propagation of uncertainty considering the area of a right trapezoid
with the absorbance values of two adjacent points as the bases, and the respective height.

Similarly, Fig. 3(a) reports the C2 absorption spectrum in the range of 2850 cm™! to 3055 cm™!
referring to a gas mixture of 1% C2 in N, together with the C2 calibration curve in Fig. 3(b).
The linear fit to the experimental data provides a sensitivity for C2 detection of 28.59 a.u./%,
confirming the expected higher sensitivity relative to methane. Indeed, although Fig. 2(a)
shows that methane exhibits stronger peak intensities compared to ethane in Fig. 3(a), the
ethane absorption band is broader and more irregular in shape. This extended spectral profile
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Fig. 2. (a) Absorbance spectrum in abs. u. (absorbance unit) acquired with a mixture of
10% of methane in nitrogen. (b) Area as a function of the C1 concentration (black dots)
with a linear fit (red line). Linear fit parameters (intercept and slope) are shown in the insets.

significantly contributes to the total integrated absorption area, as most wavenumbers exhibit
non-zero absorbance. In contrast, the regions between the narrow peaks in the methane spectrum
contribute negligibly to the overall area, due to their near-zero absorbance.
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Fig. 3. (a) Absorbance spectrum of ethane. (b) Area as a function of the C2 concentration
(black dots) with a linear fit (red line). Linear fit parameters (intercept and slope) are shown
in the insets.

Finally, the absorbance spectrum in the spectral range of 2850 cm™! to 3030 cm™~! was acquired
with a 1% C3:N; mixture in the absorption cell and is shown in Fig. 4(a).

The linear fit of the integrated absorbance area at different C3 concentrations in Fig. 3(b)
represents the calibration curve for C3 detection with a sensitivity of 47.60 a.u./%.
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Fig. 4. (a) Absorbance spectrum of propane. (b) Area as a function of the C3 concentration
(black dots) with a linear fit (red line). Linear fit parameters (intercept and slope) are shown
in the insets.

4. Selection of multivariate regression approach

The calibration curves obtained in the previous sections constitute the basis for the quantitative
analysis of gas mixtures containing two or three alkanes simultaneously. To simulate a typical
natural gas matrix, the gas samples will be deliberately prepared with a highly unbalanced
composition, featuring C1 at significantly higher concentrations than C2 and C3, mimicking
the natural gas composition in a 1:10 dilution. The primary reason for using dilution is that
excessively high concentrations can contaminate the absorption cell by promoting the adhesion
of substances to its internal walls. In such cases, a simple cleaning with a vacuum pump may
not be sufficient to remove all residues, which can compromise the accuracy of concentration
measurements for each gas mixture analyzed. This imbalance poses considerable challenges
in the quantitative interpretation of overlapping absorption spectra, particularly in accurately
resolving the spectral contributions of the minor components. To evaluate the most suitable
computational approach for this task, two multivariate regression techniques were implemented:
Multiple Linear Regression (MLR) and Partial Least Squares Regression (PLSR).

4.1.  Multiple linear regression

MLR models the relationship between the spectral response of a mixture and the concentrations
of its analytes by expressing the response as a linear combination of independent variables, under
the assumption that the absorbance at each wavenumber is linearly dependent on the concentration
of the analytes [44]. To build the regression model, individual reference spectra for each of the
three gases at known nominal concentrations were used: 10% C1:N,, 1% C2:N, and 1% C3:Nj,
respectively, as reported in Fig. 2(a), 3(a) and 4(a). Then, the absorbance spectra of the mixtures
were then recorded within the spectral range from 2850 cm™! to 3175 cm™!, to include the main
absorption bands of all target gases. The underlying idea in MLR is that the absorbance spectrum
Aror of a test gas mixture containing the three analytes C1, C2 and C3 can be expressed as the
weighted sum of the reference spectra:

cct cc2 ccs
Aror(d) = Aci1(d) - /= +Ac2(D) - = +Ac3(A) - 2
Cc1 ¢c Ce3
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In this expression, each ¢; in the numerator represents the unknown concentration to be
estimated, while ¢ with superscript “r” refers to the reference concentration used to obtain the
corresponding A;(1).

The ¢; values can be determined by solving the linear regression problem:

Y=X B+E 3)

where Y is the matrix of the dependent variables, i.e., the concentration of each analyte, X is the
matrix of the independent variables, i.e., the spectral data points, B is the regression coefficient
matrix, and E is the residuals matrix. In MLR, the B matrix is estimated by means of the ordinary
least squares methods [45]. Finally, these parameters are used to estimate the ¢; concentrations.
However, this approach is characterized by several limitations, providing unstable regression
weights and poor repeatability mainly due to correlation among the collected data [46].

4.2. Partial least squares regression

The PLSR model offers an alternative to traditional MLR, with improved capability to handle
highly correlated spectral data, making it particularly suitable for complex mixtures [37]. This
approach requires a training phase using the full set of calibration spectra collected for each
analyte at different concentrations. This method relies on two matrices: the predictor matrix
X, built from the absorbance data, and a response matrix Y, containing the corresponding gas
concentration values. The algorithm reduces the dimensionality of the data by projecting it into a
latent space, decomposing both matrices according to the following relationships:

X=TPT+E “4)

Y=UQ"+F )]

where T and U are the score matrix for X and Y, respectively containing the latent variables
(LVs); P and Q are the loading matrices for X and Y, respectively; and E and F are the residual
matrices. For consistency, the spectral interval of 2850-3175 cm™! was also selected for this
analysis. Different spectral range were also considered, e.g., the interval 2850-3005 cm™! to
reduce the influence of dominant C1 features, but no increase in prediction accuracy was observed
(see Supplement 1 A).

To identify the optimal number of LVs, which are a linear combination of the predictors, a
10-fold cross-validation approach was applied [47]. The performance of the model was assessed
by evaluating both the cumulative explained variance and the root mean square error (RMSE) as
a function of the number of PLS components, as shown in Figs. 5(a) and 5(b), respectively.

The results indicate that over 99% of the variance is captured by the first four components,
while the RMSE significantly decreases up to the fourth latent variable (LV4) and then stabilizes.
Therefore, four PLS components were identified as a good compromise, adequately capturing
the relevant variance while minimizing the prediction error and avoiding overfitting. The
corresponding loading plots, shown in Fig. 5(c), clearly prove that the first three LVs capture
meaningful spectral contributions across the wavenumber range coming from the three analytes.

Although LV4 appears relatively flat, it still captures spectral characteristics related to C2 that
would not be captured using only three LVs.

Once the latent space is defined, predictions can be evaluated using a regression model that
relates Y to X through the score matrix T'. The resulting model is expressed as:

Y=8-X (©)

where B is the matrix of regression coefficients derived from the LVs.
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Fig. 5. Percent variance (a) and RMSE (b) as functions of the number of components
obtained using the 10-fold CV approach. (c) Visualization of the contribution given from
each latent variable (LV).

5. Results

This section presents the results of the quantitative analysis conducted on laboratory-prepared
binary and ternary mixtures with concentrations representative of the typical natural gas
composition in dilution 1:10. Both MLR and PLSR approaches were employed to interpret
complex and overlapped the broadband absorbance spectra and estimate the concentrations of the
individual analytes.

The two regression methods were applied to the same experimental datasets, and the predicted
concentrations were compared to the nominal reference values to evaluate the accuracy and
reliability of each model.

5.1.  Binary mixtures

Two types of binary mixtures were prepared in laboratory using the gas blender with certified
cylinders (Fig. 1): one combining C1 and C2, and the other with combinations of C1 and C3.
Table | reports the concentrations predicted by MLR and PLSR, along with the corresponding
nominal (expected) values and relative accuracies for two representative test sets.

The uncertainties in the predicted concentrations were calculated from the standard deviation
of the regression parameters derived from residual variance. For the PLSR model, the Root Mean
Squared Error of Calibration (RMSEC) was used to quantify the average deviation between the
predicted and actual concentrations within the training set. Uncertainties in the expected values
were calculated by accounting for the nominal concentration tolerances of each gas cylinder and
an additional 1% uncertainty associated with the gas mixer setpoint.

Figure 6(a) reports the measured spectrum of the 7% C1: 0.3% C2:N, mixture together with
the simulated spectrum reconstructed by summing the individual analyte contributions estimated
using PLSR, which are separately shown in Fig. 6(b).

For comparison, the same plots are shown in Fig. 7 using concentrations extracted through the
MLR method for the same C1 and C2 mixture. In this case, the methane concentration appears
to be overestimated, resulting in a better reconstruction of the peak at 3018 cm™!, but at the cost
of a worse fit of the P and R branch peaks.
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Table 1. Comparison between the MLR and PLSR predicted and the expected concentrations for
the different test set of the two-species natural gas-type mixture (C1 and C2) between 2850 cm™?
and 3175cm~'. Expected concentrations are reported with the calculated uncertainty, MLR
predicted concentrations are reported with calculated RMSE of regression parameters, and PLSR
predicted concentrations are reported with calculated RMSEC. Arrow symbols indicate over- and
under-estimation of the retrieved concentrations.

MLR PLSR
Expected (%) Predicted (%) Accuracy (%rgr,) Predicted (%) Accuracy (%REgL)
Cl1 8.0+0.2 8.8+0.1 87 8.3+0.5 96
Test set #1 C2  0.20+0.02 0.16 +£0.02 79 0.20+0.06 100
C3 0 0.00+0.01 - 0.01 £0.06 -
Cl 7.0+0.1 7.8+0.1 88 6.9+0.2 99
Testset#2 C2  0.30+0.02 0.21+0.02 72 0.29+0.02 95
C3 0 0.00+0.01 - 0.01+0.02 -
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Fig. 6. (a) Comparison between experimental absorbance spectrum of a 7% C1 and 0.3%
C2 mixture (black) and simulated spectrum reconstructed from a sum of PLSR estimated
concentrations (red). Residuals are plotted with a visual shift of -0.2 (orange) (b) Individual
spectral contributions of C1 (blue), C2 (green), and C3 (magenta) based on PLSR estimates.

A similar analysis was conducted with binary mixtures of C1 and C3 in N,. Table 2 summarizes
the predicted concentrations for two representative test sets. As in the previous case, the PLSR
method demonstrates high accuracy, exceeding 97%.
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Fig. 7. (a) Comparison between experimental absorbance spectrum of a 7% C1 and 0.3%

C2 mixture (black) and simulated sp
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concentrations (red). Residuals are plotted with a visual shift of -0.2 (orange) (b) Individual
spectral contributions of C1 (blue), C2 (green), and C3 (magenta) based on MLR estimates.

Table 2. Comparison between the MLR and PLSR predicted and the expected concentrations for

the different test set of the two-species natural gas-type mixture (C1 and C3) between 2850 cm

-1

and 3175cm™'. Expected concentrations are reported with the calculated uncertainty, MLR
predicted concentrations are reported with calculated RMSE of regression parameters, and PLSR

predicted concentrations are reported wi

th calculated RMSEC. Arrow symbols indicate over- and

under-estimation of the retrieved concentrations.

MLR PLSR
Expected (%) Predicted (%) Accuracy (%rgr) Predicted (%) Accuracy (%RrgL)
Cl 9.0+0.2 9.3+0.1 T 97 8.7+0.2 l 97
Testset#l C2 0 0.00+0.01 - -0.01 £0.02 -
C3  0.10+0.01 0.07+0.01 68 0.10+£0.02 < 100
Cl  7.0=+0.1 7.8+0.1 88 6.8+04 l 97
Testset#2 C2 0 0.00+0.02 - 0.02+£0.06 -
C3  0.30+0.02 0.23+001 | 77 0.29+£0.06 l 97

In contrast, while the MLR method accurately predicts C1 concentrations, as expected due to

its much higher levels (9% and 7%), it p
70%.

erforms poorly for C3, with accuracies dropping below

Figure 8 compares the sum of the individual spectral contribution extracted by the PLSR
model with the experimental spectrum, both referred to a mixture of 9% C1:0.1% C3:N».
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Fig. 8. (a) Comparison between experimental absorbance spectrum of a 9% C1 and 0.1%
C3 mixture (black) and simulated spectrum reconstructed from a sum of PLSR estimated
concentrations (red). Residuals are plotted with a visual shift of -0.2 (orange) (b) Individual
spectral contributions of C1 (blue), C2 (green), and C3 (magenta) based on PLSR estimates.

5.2.  Ternary mixtures

A more intricate scenario was explored by preparing ternary mixtures of C1, C2 and C3 at
varying concentrations in N;. Using the same approach as before, Table 3 compares the expected
and predicted concentrations of the three analytes for three test sets, along with their respective
accuracy values.

Even in mixtures containing the three analytes, PLSR provides higher accuracy in estimating
the concentrations of individual components within a natural gas-type mixture. It is worth noting
that MLR results are characterized by higher precision compared to PLSR ones, as also reported
in Table 1 and 2. However, this degree of precision does not correspond to a high degree of
accuracy. This behavior is indicative of overfitting, a well-known limitation of MLR, particularly
when applied to large datasets.

An important observation emerges to guide the upcoming discussion. The test set #1, consisting
of 8% C1, 0.1% C2, and 0.1% C3, yields only 82% accuracy in predicting the concentration of
C2. In contrast, test set #3, with the same concentration of C2 but reduced C1 (7%) and slightly
increased C3, achieves nearly perfect prediction accuracy (=100%) for C2. This suggests that the
primary challenge in the prediction capability lies in distinguishing C2 from C1, due to their
highly overlapping spectral signatures. Reducing the dominance of C1 in the mixture improves
the accuracy of detectability of C2, even when the C3 contribution increases.
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Table 3. Comparison between the MLR and PLSR predicted and the expected concentrations for
the different test set of the three-species natural gas-type mixture (C1, C2 and C3) between
2850cm~"! and 3175cm™1. Expected concentrations are reported with the calculated uncertainty,
MLR predicted concentrations are reported with calculated RMSE of regression parameters, and
PLSR predicted concentrations are reported with calculated RMSEC. Arrow symbols indicate over-
and under-estimation of the retrieved concentrations.

MLR PLSR
Expected (%) Predicted (%) Accuracy (%Rrgr,) Predicted (%) Accuracy (%RrgL)

Cl 8.0+0.2 8.4+0.1 T 9% 8.1+0.5 T 99
Testset#1 C2  0.10+0.01 0.07+0.02 | 69 0.08+0.06 | 82

C3 0.10+0.01 0.09+001 | 90 0.11+0.06 7T 89

Cl 75+02 8.0+0.1 T 93 74+05 l 99
Testset#2 C2  0.15+0.01 0.11+002 | 72 0.13+0.06 | 88

C3 0.10+0.01 0.06+001 | o4 0.09+£0.06 | 90

Cl  7.0x0.1 7.6+0.1 T 9 6.7+0.2 l 96
Testset#3 C2  0.10+0.01 0.05+0.02 | 50 0.10+£0.02 < 100

C3  0.20+0.02 0.15+001 | 77 0.19+0.02 | 94
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Fig. 9. (a) Comparison between experimental absorbance spectrum of a 7% C1, 0.1% C2
and 0.2% C3 mixture (black) and simulated spectrum reconstructed from a sum of PLSR
estimated concentrations (red). Residuals are plotted with a visual shift of -0.2 (orange) (b)
Individual spectral contributions of C1 (blue), C2 (green), and C3 (magenta) based on PLSR
estimates.
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As in the case of binary mixtures, Fig. 9 reports the comparison between the experimental and
PLSR-simulated spectrum for test set #3.

6. Discussion

In the previous analysis, the physical parameter selected to represent the absorbance was the area
under the absorbance spectrum. This approach accounts for the cumulative effect of all spectral
features, both weak and intense, associated with the analyte, with each one contributing with
its weight to the total integrated absorbance. To isolate and assess the individual contributions
to the integrated absorbance, the peak intensity of each absorption feature composing the
overall spectral signature can be calibrated against the analyte concentration, following the
typical approach used in absorption spectroscopy when a narrow-band diode laser targets a
specific feature within an absorption band. This is reasonable, as the concentration range is
not sufficiently wide to observe a noticeable spectral broadening of individual features with
increasing concentration, as experimentally verified, due also to the poor spectral resolution
of the OSA207C. Following the observations reported in the previous section, a calibration of
absorbance values was performed for the most prominent C1 peaks at 3018 cm™' (Q-branch)
and 2959 cm™! (P-branch), as shown in Figs. 10(a) and 10(b), respectively. For comparison,
Figs. 10(c) and 10(d) report the corresponding calibration curves for these C1 peaks within a lower
concentration range, obtained starting from a certified cylinder with a mixture of 0.5%:C1:N; at
the gas blender input (Fig. 1).

(a) (b)
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Fig. 10. Calibration curves of absorbance as a function of C1 concentration (black dots)
at two characteristic wavenumbers. Panels (a) and (b) show the absorbance response at
3018 cm™! (Q branch) and 2959 cm™~! (P branch), respectively, for high C1 concentrations
(0-10%). Panels (c) and (d) report the corresponding linear calibration curves at low
concentration (0-0.5%) for the same peaks.
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Fig. 11. (a) Comparison between experimental absorbance spectrum of a 0.2% C1, 0.2%
C2 and 0.4% C3 mixture (black) and simulated spectrum reconstructed from a sum of MLR
estimated concentrations (red). Residuals are plotted with a visual shift of -0.2 (orange) (b)
Individual spectral contributions of C1 (blue), C2 (green), and C3 (magenta) based on MLR
estimates.

At high C1 concentrations (Figs. 10(a) and 10(b)), the two most intense C1 peaks exhibit a
clear saturation in intensity rather than scaling linearly with concentration. This occurs already
at concentrations even higher than 2% for C1 peaks at 3018 cm™!. When the concentration range
is reduced (Figs. 10(c) and 10(d)), both peaks maintain linearity, indicating that the saturation
effect arises solely at higher concentrations. By comparing Fig. 10(a) and Fig. 10(c) related to
the most intense peak of the C1 Q-branch, it can be seen that linearity is maintained up to 0.5%,
after which the absorbance levels off at a value of 1.2. Since the C1 band contains numerous
additional spectral features at lower intensity (Fig. 2(a)), it is reasonable to assume that their
peak values scale nearly linearly with concentration. As a result, their cumulative contribution
to the total integrated absorbance area is substantial enough to mask the non-linear behavior of
the more intense peaks. This explains why the integrated absorbance area for C1 shows a linear
relationship with concentration (Fig. 2(b)), and why the prediction accuracy for C1 concentration
has consistently remained high (> 96%) across all cases analyzed in this study. Therefore, the
reason behind the reduced predictivity of C2 is straightforward and can be directly attributed to
its wide spectral interference with C1. This is more critical in ternary mixtures because almost
all spectral contribution of C3 fall within that spectral range. A substantial portion of the C2
absorption band overlaps with the intense spectral region associated with C1 (Fig. 6(b)). As a
result, the strong and saturating response from the dominant C1 component masks the linear
behavior of the C2 signal, effectively overwhelming its contribution and in turn compromising the
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Fig. 12. (a) Comparison between experimental absorbance spectrum of a 0.2% C1, 0.2%
C2 and 0.4% C3 mixture (black) and simulated spectrum reconstructed from a sum of PLSR
estimated concentrations (red). Residuals are plotted with a visual shift of -0.2 (orange) (b)
Individual spectral contributions of C1 (blue), C2 (green), and C3 (magenta) based on PLSR
estimates.

accuracy of its identification. These effects can thus explain the reduced prediction accuracy of
MLR algorithm, which is highly sensitive to spectral correlation. In the case of PLSR, this results
in an optimal number of latent variables (LVs) identified by cross-validation (4) that exceeds the
number of analytes (3), indicating that the fourth LV captures both co-existing linear and nonlinear
spectral features present in the data. The effect of saturation in the C1 Q-branch is particularly
evident in the single-peak sensor calibration. Because MLR linearly scales the C1 reference
spectrum, which already includes saturation, this effect contributes to the overestimation of C1
concentration. However, excluding the zero-C1 data point, the calibration approaches a linear
behavior with a non-zero offset in the explored concentration range. Such a trend can be still
modelled by MLR, as it is demonstrated by comparing the results achieved analyzing a reduced
range (2850-3005 cm™!, without the C1 Q-branch) and the full range (2850-3175 cm™), as
reported in Table S1-S3. For C1 retrieval accuracy, the reduced range returned to a value of 89%
value, compared to 91% obtained with the full range, as reported in Table S4. Conversely, PLSR
is less affected by this issue, as it identifies and prioritizes spectral features with strong covariance,
effectively down-weighting the influence of saturated components. It is worth noting that, in
more complex scenarios where saturation affects broader spectral regions, a hybrid multivariate
strategy has been proposed to address saturation effects by identifying and excluding saturated
regions prior to calibration [48]. Nonetheless, since our study already achieves good performance
using PLSR combined with spectral window selection, the added benefit of implementing the
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full hybrid method may be limited for the gas mixtures considered here. Specifically, this study
focuses on natural gas analysis at a 1:10 dilution ratio, where only methane reaches concentrations
sufficient to cause saturation, and even then, only in the Q-branch.

To further support this, Fig. 11(a) shows a comparison between the experimental spectrum and
the MLR-simulated spectrum for a “low concentration” mixture containing 0.2% C1, 0.2% C2,
and 0.4% C3 in N,. The individual spectral contributions of each component are also presented
in Fig. 11(b).

For comparison, the PLSR-simulated spectrum for the same mixture is presented in Fig. 12.

In this case, the PLSR-CV analysis individuates 3 as the optimal number of LVs for the
regression problem, supporting the previous discussion.

7. Conclusions

In this study, a gas sensing system was developed for the broadband detection and quantification
of the three main alkanes composing natural gas, using MIR direct absorption spectroscopy. The
system combines a broadband supercontinuum light source with an absorption cell with an optical
path length L = 11.6 cm and an optical spectrum analyzer (OSA). This configuration allows for the
reconstruction of the full absorption bands of light hydrocarbons in the 2850-3200 cm™! range,
enabling the identification of strongly overlapping spectral features. For quantitative analysis, the
performance of two regression techniques, such as MLR and PLSR, was evaluated on binary
and ternary mixtures with unbalanced component concentrations (ratio 1:10), representative of
natural gas compositions. The results demonstrated that PLSR outperformed MLR in accuracy.
Specifically, MLR yielded mean prediction accuracies of 91% for C1, 68% for C2, and 75%
for C3, whereas PLSR achieved 98%, 93%, and 94%, respectively. The PLSR-reconstructed
spectrum perfectly aligns with experimental data, highlighting the superior ability of PLSR to
decompose individual contributions and accurately identify components that are most predictive
of concentration levels. This is particularly evident in cases with significant spectral overlap and
unbalanced proportionality among the components, conditions that an MLR approach struggles
to manage. However, when non-linearities are introduced, the predictivity of the model is slightly
affected even with the PLSR approach.

In summary, the main advantages of MLR are its simplicity, ease of interpretation, and
computational efficiency. It provides clear coefficients that directly reflect the influence of each
predictor on the outcome, making the results straightforward to understand. However, MLR
relies on the assumption that predictors are independent, and tends to perform poorly when
multicollinearity is present or when the number of predictors is close to or exceeds the number of
observations. On the other hand, PLSR excels in handling datasets with highly collinear predictors
or when there are more predictors than samples. Its strength lies in reducing dimensionality
while maximizing the covariance between predictors and responses, which enhances model
robustness and predictive accuracy in complex, multivariate settings. Nonetheless, PLSR is
generally less interpretable than MLR because its latent variables are combinations of the
original predictors, complicating the attribution of effects to individual variables. Additionally,
selecting the appropriate number of latent components requires careful cross-validation to prevent
overfitting or underfitting.
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