20 Febbraio 2025

Optoelectronics and Nanotechnology

Syllabus

1. Semiconductor Structures

1.1 Silicon, Germanium and Gallium Arsenide. 1.1.1. Covalent Bonding. 1.1.2. Crystal Structure. 1.1.3. Energy Bands. 1.1.4. Band Gap. 1.2. Carrier Concentration at Thermal Equilibrium. 1.2.1. Intrinsic Semiconductor. 1.2.2. Donors and Acceptors. 1.2.3. Extrinsic Carriers Concentration. 1.3. Carrier Transport Phenomena. 1.3.1. Drift and Mobility. 1.3.2. Diffusion Process. 1.3.3. Current Density Equations. 1.3.4. Direct Recombination. 1.3.5. Continuity Equation. 1.4. p-n Junction. 1.4.1. Thermal Equilibrium Condition. 1.4.2. Depletion Region. 1.4.3. Current-Voltage Characteristics. 1.5. Light-Emitting Diodes. 1.5.1. Radiative Transitions and Optical Absorption. 1.5.2. Structure of a LED. 1.5.3. Emission Spectrum. 1.5.4. Quantum Efficiency. 1.5.5. The Light Escape Cone.

2. Diode Lasers

2.1. Conditions for laser emission. 2.1.1. Population inversion. 2.1.2. Two-level laser scheme. 2.1.3. Three-level laser scheme. 2.1.4. Optical Resonator. 2.1.5. Population inversion in a semiconductor. 2.2. Basic Concepts. 2.2.1. Maxwell’s Equations. 2.2.2. Longitudinal Modes. 2.2.3. Threshold Conditions. 2.2.4. Waveguide modes with Effective Index Approximation. 2.3. Emission Characteristics. 2.3.1. Light-Current Characteristics. 2.3.2. Spectral Characteristics. 2.4. Distributed-Feedback Semiconductor Lasers. 2.4.1. DFB Laser Structure. 2.4.2. Coupled-Wave Equations. 2.4.3. Continuous-Wave Operation. 2.4.4. Tunable DFB Diode lasers. 2.5. External-Cavity Diode Lasers. 2.5.1. Two-cavity Systems. 2.5.2. The Littrow and Littman-Metcalf configurations.

3. Quantum Cascade Lasers

3.1. 2D Quantum Heterostructures. 3.1.1. Finite Quantum Well. 3.1.2. Quantized Energy Levels. 3.1.3. Density of States. 3.1.4. Influence of Effective Mass. 3.2. Quantum Cascade Laser. 3.2.1. The infrared spectral region. 3.2.2. The Auger Recombination. 3.2.3. The concept of quantum cascade. 3.2.4. Electron-phonon scattering in a subband. 3.2.5. Population inversion between two subbands. 3.2.6. Quantum Cascade Laser with Three-level active region. 3.2.7. Threshold current. 3.2.8. Advantages of Quantum Cascade Lasers..

4. Infrared Photodetectors

4.1. Photovoltaic Detector. 4.1.1. Photovoltaic Effect. 4.1.2. Photocurrent Generation. 4.1.3. Responsivity and Quantum Efficiency. 4.1.4. Temporal Frequency Response. 4.1.5. Noise Sources. 4.1.6. Figures of Merit. 4.2. Photoconductive Detector. 4.2.1. Theory of Photoconductors. 4.2.2. Temporal Frequency Response. 4.2.3. Noise Sources. 4.3. Thermal Detector. 4.3.1. Principle of Detection. 4.3.2. Heat Balance Equation. 4.3.3. Seebeck Effect and Thermocouples. 4.3.4. Thermopiles. 4.3.5. Pyroelectric Detectors.

5. Low Dimensional Structures

5.1 Introduction. 5.2. 2D Graphene. 5.2.1. Crystal Structure. 5.2.2. Brillouin Zone. 5.2.3. Energy Bands: Tight-Binding approach. 5.2.4. Energy Bands. 5.2.5. Density of States. 5.3. Quantum Wire. 5.3.1. Energy Bands. 5.3.2. Density of States. 5.3.3. GaAs Nanowire: Subbands and Probability Density. 5.4. Quantum dot. 5.4.1. Density of States. 5.4.2. Energy Levels in Spherical Potential Well. 5.4.3. Thermal vs Nonthermal Distribution. 5.4.4. Population Statistics: Rate Equations vs Random Population. 5.5. Phosphorene and Black Phosphorus. 5.5.1. Crystal Structure. 5.5.2. Primitive Cell and Brillouin Zone. 5.5.3. Energy Bands and Density of States. 5.5.4. Field-Effect Transistors. 5.5.5. Photodetectors.

TEXTBOOKS

Govind P. Agrawal, Niloy K. Dutta – Semiconductor Lasers, AT&T Bell Laboratories, Murray Hill, New Jersey.
E. L. Dereniak, D. G. Crowe – Optical radiation detectors, Wiley, 1984.

SLIDES

1. SEMICONDUCTOR STRUCTURES

2. DIODE LASERS

3. QUANTUM CASCADE LASERS

4. INFRARED PHOTODETECTORS

5. LOW DIMENSIONAL STRUCTURES